首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   24篇
化学工业   84篇
建筑科学   2篇
能源动力   1篇
轻工业   6篇
石油天然气   2篇
无线电   3篇
一般工业技术   1篇
冶金工业   10篇
自动化技术   3篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   11篇
  2019年   18篇
  2018年   1篇
  2017年   1篇
  2016年   23篇
  2015年   5篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
排序方式: 共有112条查询结果,搜索用时 578 毫秒
1.
2.
X‐ray photoelectron spectroscopy (XPS) is a quantitative surface analysis technique used to identify the elemental composition, empirical formula, chemical state, and electronic state of an element. The kinetic energy of the electrons escaping from the material surface irradiated by an x‐ray beam produces a spectrum. XPS identifies chemical species and quantifies their content and the interactions between surface species. It is minimally destructive and is sensitive to a depth between 1–10nm. The elemental sensitivity is in the order of 0.1 atomic %. It requires ultra high vacuum ( Pa) in the analysis chamber and measurement time varies from minutes to hours per sample depending on the analyte. XPS dates back 50 years ago. New spectrometers, detectors, and variable size photon beams, reduce analysis time and increase spatial resolution. An XPS bibliometric map of the 10 000 articles indexed by Web of Science[1] identifies five research clusters: (i) nanoparticles, thin films, and surfaces; (ii) catalysis, oxidation, reduction, stability, and oxides; (iii) nanocomposites, graphene, graphite, and electro‐chemistry; (iv) photocatalysis, water, visible light, and ; and (v) adsorption, aqueous solutions, and waste water.  相似文献   
3.
Although X-ray absorption spectroscopy (XAS) was conceived in the early 20th century, it took 60 years after the advent of synchrotrons for researchers to exploit its tremendous potential. Counterintuitively, researchers are now developing bench type polychromatic X-ray sources that are less brilliant to measure catalyst stability and work with toxic substances. XAS measures the absorption spectra of electrons that X-rays eject from the tightly bound core electrons to the continuum. The spectrum from 10 to 150 eV (kinetic energy of the photoelectrons) above the chemical potential—binding energy of core electrons—identifies oxidation state and band occupancy (X-ray absorption near edge structure, XANES), while higher energies in the spectrum relate to local atomic structure like coordination number and distance, Debye-Waller factor, and inner potential correction (extended X-ray absorption fine structure, EXAFS). Combining XAS with complementary spectroscopic techniques like Raman, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) elucidates the nature of the chemical bonds at the catalyst surface to better understand reaction mechanisms and intermediates. Because synchrotrons continue to be the light source of choice for most researchers, the number of articles Web of Science indexes per year has grown from 1000 in 1991 to 1700 in 2020. Material scientists and physical chemists publish an order of magnitude articles more than chemical engineers. Based on a bibliometric analysis, the research comprises five clusters centred around: electronic and optical properties, oxidation and hydrogenation catalysis, complementary analytical techniques like FTIR, nanoparticles and electrocatalysis, and iron, metals, and complexes.  相似文献   
4.
5.
6.
7.
8.
9.
10.
A cerium‐doped FePO4 catalyst dehydrates glycerol to acrolein in the gas phase but carbon accumulation reduces the reaction rate with time. Reaction rates may be maintained for longer times by co‐feeding low concentrations of oxygen together with the glycerol, but the acrolein yield drops proportionally to the oxygen concentration. The catalyst is easily regenerated by air and the reaction rate is proportional to both the oxygen concentration and quantity of carbon. The carbonaceous deposits may be due to both glycerol and acrolein: when either is fed to the catalyst, the CO2/CO ratio is close to 1; during the regeneration step, the CO2/CO ratio is near 4. A kinetic model of first order in both oxygen concentration and adsorbed sites characterizes the transient data very well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号