首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
综合类   1篇
矿业工程   2篇
  2019年   1篇
  2018年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
以冲击倾向性煤层和煤与瓦斯突出煤层作为研究对象,基于压汞法和液氮吸附的实验结果,综合分析了煤样的孔隙结构特征;依据包括煤岩孔隙结构特征在内的物理力学参数,建立了数值模型,从煤层应力分布和应变能的角度讨论了煤的孔隙结构与煤岩动力失稳特征之间的相关性.液氮吸附和压汞实验表明:忻州窑煤样的孔隙主要是开放型孔,赵各庄煤样的孔隙含半开放型孔隙较多,且含有一定量的墨水瓶孔;忻州窑煤样的孔隙含量,尤其是渗流孔隙的含量远大于赵各庄煤样,因此忻州窑煤层中瓦斯更容易释放.数值模型的计算结果表明:在上覆岩层应力和水平应力相同条件下,忻州窑煤层中煤壁附近区域的水平应力比赵各庄煤层低,垂直应力高于赵各庄煤层,煤壁附近的煤体易发生压剪破坏;上覆岩层应力和水平应力相同(6 MPa)时,赵各庄煤层受扰动后应变能密度变化量接近忻州窑煤层应变能密度变化量的2倍,可见赵各庄煤层更易积聚应变能.  相似文献   
2.
基于对吸附变形煤样的压汞法测试,得到了煤样的孔隙度、比表面积、中值孔径和不同类型孔隙的分形维数等孔隙特征参数;通过煤样吸附解吸变形与孔隙结构特征参数的相关性分析发现:煤样吸附解吸变形与孔隙度、比表面积、孔隙分形维数等孔隙结构有一定的相关性,其中煤样孔隙分形维数与吸附体应变的正相关性最为显著。  相似文献   
3.
祝捷  唐俊  王琪  王全启  张博  张犇 《煤炭学报》2019,44(6):1764-1770
与气体压力有关的煤层渗透率变化规律是煤矿开采和煤层气开发过程中的重要问题,不同应力条件下,不同类型煤样的渗透率演化特征不同。为了研究瓦斯压力变化过程中煤样渗透性的变化规律,以开滦赵各庄煤矿9号煤层的煤样为研究对象,利用含瓦斯煤热-流-固耦合三轴伺服渗流装置,在恒定温度、轴压和围压,降低瓦斯压力的实验条件下测定了煤样应变和瓦斯渗透率。实验结果表明:随着瓦斯压力的降低,煤样收缩应变加剧,渗透率表现为两种变化趋势:逐渐增大和先减小后增大(渗透率回升对应的瓦斯压力小于1. 0 MPa)。瓦斯压力降低至0. 3 MPa时,渗透率为初始条件下(瓦斯压力2. 0 MPa)渗透率的1. 9~2. 9倍。考虑到煤样在径向和轴向的收缩应变数值接近,针对三维变形煤样建立了渗透率模型,模型同时体现了气体压力和气体解吸对渗透率的影响。理论分析表明,降压过程中煤的渗透率将在某一气体压力(反弹气体压力pr)时由降低转为升高。推导的反弹气体压力pr计算公式显示pr的取值由煤样的体积模量K、与吸附效应有关的Langmuir系数εp和pL共同决定;体积模量K与吸附变形系数εp越大,pr越大。值得注意的是,pr的取值与煤样的外部应力以及内部的气体压力无关。结合本文和前人的实验数据,由本文的渗透率模型计算得到了不同应力和瓦斯压力条件下的煤样渗透率变化曲线以及相应的反弹气体压力pr。模型计算结果与实验数据接近,最大相对误差低于8. 9%。研究表明,实验测得煤样的渗透率表现为何种变化趋势,取决于反弹气体压力pr和实验气体压力的关系。当pr≥pmax(实验测点中最大的气体压力值)时,渗透率随着气体压力增大而降低;当pr≤pmin(实验测点中最小的气体压力值)时,渗透率随着气体压力增大而增大;当pminprpmax时,随瓦斯压力的增大,煤样渗透率呈"V"形变化,即先减小后增大。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号