首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
矿业工程   7篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
目前,各种群智能优化算法涌现且各有特色、性能各异、普适性不强、在开采沉陷领域应用较少,更为重 要的是,众多学者面对该类算法,无法有效选择最优算法进行开采沉陷研究。 常见的群智能优化算法中狮群算法( Lion Swarm Optimization,LSO)、蝙蝠算法(Bat Algorithm,BA)、人工鱼群算法(Artificial Fish School Algorithm,AFSA)具有 不同的特征,且在概率积分参数反演中鲜有应用。 为此,将上述 3 种群智能优化算法引入概率积分参数反演中,并从 抗随机误差性能、抗粗差干扰性能、观测点缺失的抗干扰性能、参数波动性和全局搜索性能等几个角度对群智能优化 算法进行研究分析。 模拟试验及工程实例分析表明,上述 3 种群智能优化算法均满足应用精度要求。 LSO 算法在抗 随机误差干扰影响、观测点缺失的抗干扰能力方面以及参数结果总体波动性方面相对于 BA、AFSA 算法有一定优势; BA 算法在抗粗差干扰能力方面优于 LSO、AFSA 算法;在全局搜索性能方面,随着反演参数解空间范围扩大为原来的 2 倍后,用 AFSA 算法反演概率积分参数的精度优于 LSO、BA 算法。 通过详细比较分析,总结了上述 3 种算法在开采 沉陷中的性能表现,可为有效选择合适的群智能优化算法进行概率积分参数反演提供参考。  相似文献   
2.
为弥补复杂形状工作面变形预计的不足,提高开采沉陷变形预计的准确性,构建了一种基于改进三角剖分的复杂形状工作面开采沉陷预计方法。该方法引入了改进的三角剖分算法,优化了坐标系统转换、拐点偏移改正等方法,基于概率积分法原理建立了复杂形状工作面的开采沉陷预计模型。该模型首先利用改进的三角剖分算法将工作面剖分为多个三角形;然后用变步长Simpson二重积分方法在三角形单元内进行下沉预计,将各单元的预计结果求和,即可得到整个工作面开采对地表下沉的影响情况;最后根据概率积分法原理可分别得到其他移动变形预计值。采用MATLAB软件开发了所构建模型的沉陷预计程序。模拟试验结果表明:该模型预计值插入点全部分布于常规概率积分法预计下沉曲线上,表明该模型能够对形状较为复杂的不规则工作面进行开采沉陷变形预计。淮南顾桥矿1414(1)工作面实例分析表明:该模型预计的下沉曲线与实测下沉曲线的拟合度较好,预计下沉值的绝对误差为0.2~359.2 mm,相对误差为25.02%,中误差为 101.9 mm,能较好地满足工程应用需求。开采沉陷|三角剖分算法|概率积分法|Simpson二重积分|复杂形状工作面  相似文献   
3.
针对常规地球物理勘探法探测老采空区时存在的解译依赖于先验知识、探测精度低等问题,对采空区参数识别方法进行了研究。将煤层厚度m、煤层倾角α、工作面倾向方位角v、采深H、走向长D_3、倾向长D_1以及采空区中心点坐标(X_1,Y_1)定义为矩形采空区的特征参数,以地表沉陷预计模型(概率积分法)为基础,构建了采空区参数与地表沉陷的定量关系模型(将采空区参数视为待求参数,将实测地表沉陷值视为已知量),提出了基于模矢法的采空区参数识别方法。顾桥矿1414工作面采空区试验表明:采用所提方法识别采空区的相对误差绝对值优于17.7%,相对误差绝对值平均为5.15%,下沉拟合误差为-120~120 mm,下沉拟合中误差为-53~53 mm。  相似文献   
4.
为了克服遗传算法(Genetic algorithm,GA)在概率积分参数反演过程中存在的搜寻速度较慢、易早熟的不足,将量子遗传算法(Quantum genetic algorithm,QGA)引入概率积分法进行参数求取,构建了基于QGA的概率积分参数反演模型。模拟试验表明:基于QGA的概率积分参数反演模型不仅能够准确求取预计参数,而且对于观测站数据中的随机误差、粗差和监测点缺失都具有较强的抗干扰能力。淮南顾桥北矿1312(1)工作面概率积分求参试验表明:基于QGA的参数反演模型在准确性、稳定性方面明显优于基于GA的求参模型,对于精确求取概率积分参数具有一定的参考价值。  相似文献   
5.
为弥补复杂形状工作面变形预计的不足,提高开采沉陷变形预计的准确性,构建了一种基于改进三角剖分的复杂形状工作面开采沉陷预计方法。该方法引入了改进的三角剖分算法,优化了坐标系统转换、拐点偏移改正等方法,基于概率积分法原理建立了复杂形状工作面的开采沉陷预计模型。该模型首先利用改进的三角剖分算法将工作面剖分为多个三角形;然后用变步长Simpson二重积分方法在三角形单元内进行下沉预计,将各单元的预计结果求和,即可得到整个工作面开采对地表下沉的影响情况;最后根据概率积分法原理可分别得到其他移动变形预计值。采用MATLAB软件开发了所构建模型的沉陷预计程序。模拟试验结果表明:该模型预计值插入点全部分布于常规概率积分法预计下沉曲线上,表明该模型能够对形状较为复杂的不规则工作面进行开采沉陷变形预计。淮南顾桥矿1414(1)工作面实例分析表明:该模型预计的下沉曲线与实测下沉曲线的拟合度较好,预计下沉值的绝对误差为0.2~359.2 mm,相对误差为25.02%,中误差为 101.9 mm,能较好地满足工程应用需求。开采沉陷|三角剖分算法|概率积分法|Simpson二重积分|复杂形状工作面  相似文献   
6.
针对传统测量方法提取矿区地表形变存在获取数据是离散、低密度,不能完整有效地对建筑物损坏等级进行评价等问题。拟提出基于三维激光扫描技术(3DLS)的矿区建筑物形变监测及采动损害评估方法研究。首先介绍了基于三维激光的建筑物变形监测精度设计方法及建筑物采动损害评估方法。其次构建了基于量子粒子群(QPSO)的三维激光标靶球拟合方法,并进行了精度分析。随后对淮南某矿区地表建筑物进行了多时段实时观测,并对矿区开采沉陷盆地建筑物的特征点进行形变信息提取。最后依据《建筑物、水体、铁路及主要井巷煤柱留设现压煤开采规程》对房屋的损坏等级进行了评价。结果表明:(1)QPSO算法应用于标靶球拟合具有一定的稳定性且其结果精度较高。(2)矿区地表建筑物的损坏等级与距开切眼的距离成正比,离开切眼越近,建筑物的损坏等级越高,同时其与工作面的掘进进度有关,随着工作面开采强度的提高,地表建筑物的损坏程度也随之提高。综上,应用三维激光扫描技术监测矿区地表建筑物的采动损害对矿区安全生产及评估有着指导性的意义,研究成果对附近矿区的地质环境灾害评估与防治具有重要的参考价值。  相似文献   
7.
概率积分法预计模型反演参数过程中存在计算量大、过程复杂等问题,现有的智能优化算法可以弥补这些不足,但存在易陷入早熟收敛、粒子全局搜索效果较差、收敛速度较慢等缺陷。通过试验发现量子粒子群(Quantum-behaved Particle Swarm Optimization Algorithm,QPSO)算法能够在保证精度不变的基础上极大降低算法的运行时间,并降低粒子陷入早熟收敛的概率,将粒子扩大为全局唯一的解空间。将量子粒子群算法引入到开采沉陷预计参数求解中,以下沉和移动变形的实测值与预计值之差的绝对值累加和最小为求参代价函数,构建了基于QPSO算法的概率积分法参数反演模型。研究结果表明:①模拟试验中,在相同的运行环境下,QPSO算法与粒子群(Particle Swarm Optimization,PSO)算法的求参精度相当,QPSO算法求参稳定性略高,且求参效率大幅度提高(QPSO算法运行时间比PSO算法减少近90%),验证了基于QPSO算法的概率积分法参数反演模型的有效性与可靠性;②利用所建立的QPSO参数反演模型求解了顾桥南矿1414(1)工作面概率积分法参数,求取结果为:q=1.041 5,tanβ=1.910 8,b=0.374 2,θ=85.086 9 ,S1=55.663 5 m,S2=37.161 8 m,S3=-0.667 0 m,S4=-9.798 0 m,下沉与水平移动拟合中误差为72.04 mm,符合工程应用标准,尽管QPSO算法与PSO算法求解精度相当,但运算效率显著提高。所构建的模型对于开采沉陷预计参数精准反演具有一定的参考价值。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号