首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
化学工业   8篇
金属工艺   1篇
矿业工程   1篇
轻工业   12篇
无线电   4篇
一般工业技术   2篇
冶金工业   7篇
自动化技术   4篇
  2021年   3篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1976年   2篇
  1973年   2篇
排序方式: 共有39条查询结果,搜索用时 0 毫秒
1.
2.
The paper presents the study of electrocoagulation (EC) of aqueous dye solutions of two different industrial dyes in a batch stirred cell. Experiments were carried out with 200 mg/l individual concentration of methylene blue (MB) and eosin yellowish (EY) in presence of NaCl as electrolyte. Effect of operating time and current density on the decolorization of dye solutions, reduction of chemical oxygen demand (COD) and variation in conductivity, pH during treatment has been studied. Small difference between color diminution and COD reduction has been found with the progress of treatment. First-order rate equation for dye removal has been developed from the experimental results. Sludge formation during EC and problems associated with this solid waste generation and disposal has been assessed. Energy consumption in KWh/m(3) with reduction of COD (kg) during treatment has been reported. Electric power consumption of 1.5 KWh reduces 0.21 and 0.11 kg COD from 0.24 and 0.14 kg of initial COD for MB and EY, respectively, starting from 200 mg/l dye concentration.  相似文献   
3.
The theory of reasoned action (TRA) is used to model decisions about substance use among young mothers who became premaritally pregnant at age 17 or younger. The results of structural equation modeling to test the TRA indicated that most relationships specified by the model were significant and in the predicted direction, Attitude was a stronger predictor of intention than norm, but both were significantly related to intention, and intention was related to actual marijuana use 6 months later. Outcome beliefs were bidimensional, and positive outcome beliefs, but not negative beliefs, were significantly related to attitude. Prior marijuana use was only partially mediated by the TRA variables; it also was directly related to intentions to use marijuana and to subsequent use. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
4.
    
In this work, electrotreatment of nickel and boron containing plating rinse effluents was studied with mild steel and aluminum electrodes. Industrial effluent treatment directly by an electrochemical technique is capable of removing 80–85 % nickel. The residual nickel interfered with boron determination by curcumin method. The pH fall during electrotreatment in industrial effluent is due to electrodeposition of nickel at the cathode surface, evidenced by simulated effluent treatment. Nickel concentration can be reduced below the discharge limit from the industrial plating effluent by chemical precipitation and coagulation at pH above 8. Chemical precipitation showed maximum boron removal of about 50 %. Boron removal was 29.3–41.9 % and 20.6–33.1 % with ferric chloride and aluminum sulfate, respectively. A combination of chemical precipitation at pH 8.7 followed by electrotreatment reduces nickel to the discharge limit and also maximizes boron removal up to 59 %.  相似文献   
5.
    
This work experimentally investigates Cr(VI) reduction to Cr(III) using waste scrap iron in the form of zerovalent iron (ZVI) collected from the mechanical workshop of the Institute, both in batch and continuous operation. The reduction of Cr(VI) to Cr(III) was found to be complete (~100%) depending on the experimental conditions. Lower pH values favour Cr(VI) reduction. Two concurrent reactions take place, that is reduction of Cr(VI) by Fe0 (ZVI) and by Fe2+ generated due to H+ corrosion of iron. Maximum around 22%, 11% and 2% Cr(III) remained dissolved in solution while the experiments were carried out at initial pH of 2, 4.67 and 7. Higher ZVI loading increases Cr(VI) reduction rate, however, consumption of iron is noted to be higher. The results indicate that the bed is exhausted rapidly at higher pH, initial Cr(VI) concentration and flow rate. This is attributable to predominance passivation of ZVI surface forming Cr(III)–Fe(III)‐oxide layer. SEM analysis of ZVI before and after the experiments confirms formation of passive oxide on iron surface is responsible for deterioration of Cr(VI) reduction efficiency due to its blanketing effect.  相似文献   
6.
Grain-based concentrate (GBC) supplement is of high cost to dairy farmers as a feed source as opposed to grazed pasture. Milk production response to GBC is affected by the composition and nutritive value of the remainder of the diet, animal factors, and interactions between forage type and level of GBC. In grazing systems, dairy cattle encounter contrasting pasture states, primarily because the social structure of the herd affects the timing of when each animal accesses a paddock after milking as a result of a relatively consistent cow milking order. However, the effect of feed management, namely pasture state and GBC allocation, on dairy cattle production and behavior is unknown. We examined the effect of varying GBC allocation for dairy cattle grazing differing states of kikuyu grass (Pennisetum clandestinum, a tropical pasture species; experiment 1) and annual ryegrass (Lolium multiflorum L., a temperate pasture species; experiment 2) on dry matter intake, milk production and composition, and grazing behavior. For each experiment, 90 lactating dairy cattle were randomly allocated to 2 consistent (fresh–fresh and depleted–depleted) and 2 inconsistent (fresh–depleted and depleted–fresh pasture state treatments (defined as sequences of pasture state allocation for the morning and afternoon grazing events) and 3 GBC treatments [2.7, 5.4, and 8.1 kg of dry matter (DM)/cow per day], giving 12 treatment combinations for each experiment. The duration of each experiment was 14 d, with the first 7 d used as adaptation to treatment. In each experiment, 3 cattle were selected from each of the 12 pasture type × GBC treatment groups within the experimental herd to determine herbage intake and total DM digestibility using the n-alkanes method (n = 36). There was no interaction between kikuyu grass or ryegrass pasture state and GBC level for intake, digestibility, or milk yield or components. Dairy cattle offered fresh–fresh and depleted–fresh ryegrass produced 9% more milk yield, in line with greater pasture intakes, compared with fresh–depleted and depleted–depleted pasture states. Dairy cattle offered fresh–fresh kikuyu grass had 8% more milk yield and 14% more milk protein yield than other pastures states, but there was no effect of pasture state on milk composition. Milk yield increased with GBC level for both pasture species (~0.7–0.8 kg of milk/kg of DM GBC) as GBC level increased from 2.5 to 5.4 kg of DM/cow per day. There was a poor response (0.3 kg of milk/kg of DM GBC), and no response, when GBC levels increased from 5.4 to 8.1 kg of DM/cow per day for kikuyu grass and ryegrass, respectively, in line with pasture DMD. Time spent grazing, lying, and ruminating were not associated with kikuyu grass pasture state, GBC, or their interaction. Despite this, there was a linear increase in grazing time in the afternoon coinciding with a linear decrease in lying and rumination time for both kikuyu grass and ryegrass pasture. Together these findings reveal the effect of pasture state and GBC allocation on dairy cattle production and behavior. Tailoring GBC allocation to the state of pasture accessed by cattle appears unwarranted, but there is an opportunity to alter the timing of pasture access to increase herd-level milk production efficiency.  相似文献   
7.
Ruminal bacterial community composition (BCC) and its associations with ruminal fermentation measures were studied in dairy heifers challenged with combinations of grain, fructose, and histidine in a partial factorial study. Holstein-Friesian heifers (n = 30) were randomly allocated to 5 triticale grain-based treatment groups: (1) control (no grain), (2) grain [fed at a dry matter intake (DMI) of 1.2% of body weight (BW)], (3) grain (0.8% of BW DMI) + fructose (0.4% of BW DMI), (4) grain (1.2% of BW DMI) + histidine (6 g/head), and (5) grain (0.8% of BW DMI) + fructose (0.4% of BW DMI) + histidine (6 g/head). Ruminal fluid was collected using a stomach tube 5, 115, and 215 min after consumption of the rations and bacterial 16S ribosomal DNA sequence data was analyzed to characterize bacteria. Large variation among heifers and distinct BCC were evident in a between-group constrained principal components analysis. Bacterial composition in the fructose-fed heifers was positively related to total lactate and butyrate concentrations. Bacterial composition was positively associated with ruminal ammonia, valerate, and histamine concentrations in the grain-fed heifers. The predominant phyla were the Firmicutes (57.6% of total recovered sequences), Bacteroidetes (32.0%), and candidate phylum TM7 (4.0%). Prevotella was the dominant genus. In general, grain or histidine or their interactions with time had minimal effects on the relative abundance of bacterial phyla and families. Fructose increased and decreased the relative abundance of the Firmicutes and Proteobacteria phyla over time, respectively, and decreased the abundance of the Prevotellaceae family over time. The relative abundance of the Streptococcaceae and Veillonellaceae families was increased in the fructose-fed heifers and these heifers over time. A total of 31 operational taxonomic units differed among treatment groups in the 3.6 h sampling period, Streptococcus bovis was observed in fructose fed animals. The TM7 candidate phylum had an increased abundance of sequence reads by over 2.5 fold due to the introduction of histidine into the diet. Rapid changes in BCC can occur in a short period after a single substrate challenge and the nature of these changes may influence ruminal acidosis risk and differ from those in cattle exposed to substrate challenges over a longer time period.  相似文献   
8.
Late-lactation Holstein cows (n = 144) that were offered 15 kg dry matter (DM)/cow per day of perennial ryegrass to graze were randomized into 24 groups of 6. Each group contained a fistulated cow and groups were allocated to 1 of 3 feeding strategies: (1) control (10 groups): cows were fed crushed wheat grain twice daily in the milking parlor and ryegrass silage at pasture; (2) partial mixed ration (PMR; 10 groups): PMR that was isoenergetic to the control diet and fed twice daily on a feed pad; (3) PMR+canola (4 groups): a proportion of wheat in the PMR was replaced with canola meal to produce more estimated metabolizable protein than other groups. Supplements were fed to the control and PMR cows at 8, 10, 12, 14, or 16 kg of DM/d, and to the PMR+canola cows at 14 or 16 kg of DM/d. The PMR-fed cows had a lower incidence of ruminal acidosis compared with controls, and ruminal acidosis increased linearly and quadratically with supplement fed. Yield of milk fat was highest in the PMR+canola cows fed 14 or 16 kg of total supplement DM/d, followed by the PMR-fed cows, and was lowest in controls fed at these amounts; a similar trend was observed for milk fat percentage. Milk protein yield was higher in the PMR+canola cows fed 14 or 16 kg of total supplement DM/d. Milk yield and milk protein percentage were not affected by feeding strategy. Milk, energy-corrected milk, and milk protein yields increased linearly with supplement fed, whereas milk fat percentage decreased. Ruminal butyrate and d-lactate concentrations, acetate-to-propionate ratio, (acetate + butyrate)/propionate, and pH increased in PMR-fed cows compared with controls for all supplement amounts, whereas propionate and valerate concentrations decreased. Ruminal acetate, butyrate, and ammonia concentrations, acetate-to-propionate ratio, (acetate + butyrate)/propionate, and pH linearly decreased with amounts of supplement fed. Ruminal propionate concentration linearly increased and valerate concentration linearly and quadratically increased with supplement feeding amount. The Bacteroidetes and Firmicutes were the dominant bacterial phyla identified. The Prevotellaceae, Ruminococcaceae, and Lachnospiraceae were the dominant bacterial families, regardless of feeding group, and were influenced by feeding strategy, supplement feeding amount, or both. The Veillonellaceae family decreased in relative abundance in PMR-fed cows compared with controls, and the Streptococcaeae and Lactobacillaceae families were present in only minor relative abundances, regardless of feeding group. Despite large among- and within-group variation in bacterial community composition, distinct bacterial communities occurred among feeding strategies, supplement amounts, and sample times and were associated with ruminal fermentation measures. Control cows fed 16 kg of DM of total supplement per day had the most distinct ruminal bacterial community composition. Bacterial community composition was most significantly associated with supplement feeding amount and ammonia, butyrate, valerate, and propionate concentrations. Feeding supplements in a PMR reduced the incidence of ruminal acidosis and altered ruminal bacterial communities, regardless of supplement feeding amount, but did not result in increased milk measures compared with isoenergetic control diets component-fed to late-lactation cows.  相似文献   
9.
    
Due to the scarcity of clean water, scientists worldwide are keen to develop cost-effective, non-toxic and eco-friendly water disinfection systems. Achieving proper disinfection without creating harmful byproducts for removing or inactivating waterborne pathogens is the main challenge. In this respect, polystyrene (PS) nanocomposites find wide applications in water storage, food packaging material, transportation, medicine, and so forth. The addition of nanoparticles such as silver nanoparticles (AgNPs) into PS enhances its mechanical properties, gas barrier properties, thermal stability, and so forth. This study reports the development of PS-AgNPs composite using green synthesized AgNPs and waste thermocol. Firstly, the green synthesized AgNPs were prepared in different concentrations and embedded accordingly into the PS matrix. The morphology of PS-AgNPs nanocomposites was studied using Field Emission Transmission Scanning Microscopy (FESEM) and Field Emission Transmission Electron Microscopy (FETEM). Fourier transform infrared spectroscopy (FTIR) was used to evaluate the prepared nanocomposites' surface chemical bonding and surface composition. The thermal property of the nanocomposites was investigated by Thermogravimetric analysis (TGA). The tensile strength of the composites was also estimated. These PS-AgNPs nanocomposites showed an antibacterial effect against Escherichia coli, a disease-causing gram-negative bacteria commonly found in water. Among them, the PS-AgNPs cup encapsulating 10% AgNPs showed optimum tensile strength and bacteria disinfection property. These nanocomposites have been utilized to prepare cups as a model of water tank for water storage having disinfection properties.  相似文献   
10.
The white noise level of space-charge-limited current (sclc) of holes in a silicon p+vp+ device has been measured at five temperatures ranging from 113 to 300°K. The noise level is proportional to the absolute temperature. This proves experimentally the thermal origin of noise for sclc in solids. More specifically, a good agreement is found with the theoretical prediction that the spectral density Sv of the white noise level equals 4kT(V/I), where V and I are the d.c. voltage and current at the operating point under consideration. In addition, noise data are also presented in the high-frequency range, where transit-time effects become important. The results are consistent with the theoretical prediction that, in this case, Sv = 4kT. 2 Re(Z), where Re (Z) is the real part of the impedance of sclc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号