首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
化学工业   3篇
机械仪表   1篇
建筑科学   2篇
矿业工程   1篇
能源动力   2篇
轻工业   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
A single‐run reverse phase‐high performance liquid chromatography method for the quantification of humulinones, α‐acids, iso‐α‐acids and reduced iso‐α‐acids (where present) in commercial beer samples is presented. The method utilizes a binary solvent system consisting of (A) 1% v/v acetic acid and (B) 0.1% v/v orthophosphoric acid in acetonitrile. Separation was achieved on a Purospher® star RP‐18 column (250 × 46 mm, 3 µm) with a flow rate of 0.5 mL/min. The compounds of interest eluted within 32 min. The method was fully validated according to International Conference on Harmonization guidelines and subsequently applied to monitor degradation of hop acids in a storage trial where four lager beers were aged at 28 and 38 °C for 70 and 60 days, respectively. Results confirmed the widely reported degradation through storage of trans‐iso‐α‐acids whilst demonstrating that the HLPC method was sufficiently sensitive to monitor and model this degradation. One beer exhibited a significantly lower (P < 0.05) rate of trans‐iso‐α‐acid degradation than the other conventionally hopped beers in the study, which might have been linked to its higher pH (4.71 vs 4.36). The relative stability of reduced iso‐α‐acids during ageing was also confirmed.  相似文献   
2.
3.
This study investigates, using in-situ and numerical simulation experiments, airflow and hygrothermal distribution in a mechanically ventilated academic research facility with known cases of microbial proliferations. Microclimate parameters were obtained from in-situ experiments and used as boundary conditions and validation of the numerical experiments with a commercial computational fluid dynamics (CFD) analysis tool using the standard k–ε model. Good agreements were obtained with less than 10% deviations between the measured and simulated results. Subsequent upon successful validation, the model was used to investigate hygrothermal and airflow profile within the shelves holding stored components in the facility. The predicted in-shelf hygrothermal profile was superimposed on mould growth limiting curve earlier documented in the literature. Results revealed the growth of xerophilic species in most parts of the shelves. The mould growth prediction was found in correlation with the microbial investigation in the case-studied room reported by the authors elsewhere. Satisfactory prediction of mould growth in the room successfully proved that the CFD simulation can be used to investigate the conditions that lead to microbial growth in the indoor environment.  相似文献   
4.
This paper presents a non-stoichiometric and thermodynamic model for steam reforming of Imperata cylindrica bio-oil for biohydrogen production. Thermodynamic analyses of major bio-oil components such as formic acid, propanoic acid, oleic acid, hexadecanoic acid and octanol produced from fast pyrolysis of I. cylindrica was examined. Sensitivity analyses of the operating conditions; temperature (100–1000 °C), pressure (1–10 atm) and steam to fuel ratio (1–10) were determined. The results showed an increase in biohydrogen yield with increasing temperature although the effect of pressure was negligible. Furthermore, increase in steam to fuel ratio favoured biohydrogen production. Maximum yield of 60 ± 10% at 500–810 °C temperature range and steam to fuel ratio 5–9 was obtained for formic acid, propanoic acid and octanol. The heavier components hexadecanoic and oleic acid maximum hydrogen yield are 40% (740 °C and S/F = 9) and 43% (810 °C and S/F = 8) respectively. However, the effect of pressure on biohydrogen yield at the selected reforming temperatures was negligible. Overall, the results of the study demonstrate that the non-stoichiometry and thermodynamic model can successfully predict biohydrogen yield as well as the composition of gas mixtures from the gasification and steam reforming of bio-oil from biomass resources. This will serve as a useful guide for further experimental works and process development.  相似文献   
5.
In this study,the physicochemical,microstructural,mineralogical,thermal,and kinetic properties of three newly discovered coals from Akunza (AKZ),Ome (OME),and S...  相似文献   
6.
In this study, an interrupted microchannel heat sink with rib turbulators was studied for its thermohydraulic effectiveness and entropy generation in a compact space. The rib edges are modified to enhance the overall functioning of the system by reducing the pressure drop. The working fluid used was Al2O3-water nanofluid, and increasing the Reynolds number and nanoparticle concentration triggered a reduction in the heat sink's maximum temperature. These also offer a decrease in resistance to heat transfer, and there is an improvement in the evenness of the temperature of the interrupted microchannel heat sink, as regions with the likelihood of hot spot reduced drastically. At Re = 100, increasing the nanoparticle concentration from 0% to 4% enhanced the heat transfer coefficient by 38.41% for the interrupted microchannel heat sink-base (IMCH-B) configuration. Under similar conditions, the convective heat transfer coefficient for the interrupted microchannel heat sink-fillet (IMCH-F) increased by 43.69%. Furthermore, at 0.5% concentration, changing the Reynolds number from 100 to 700 augmented the heat transfer coefficient by 70.65%. Thus, the maximum temperature of the substrate's bottom surface was reduced by 53.83°C when the system was operated at Re = 700 and nanoparticle concentration of 4%. The IMCH-C also showed relatively close results at all observed volume fractions. For the IMCH-C, the maximum temperature of the bottom surface was reduced by 41.98°C at Re = 700 when compared with Re = 100% and 4% concentration. Although at high Reynolds numbers and concentrations, the pressure drops are higher, the performance enhancement criteria prove that the nanofluid is superior to water and the edge modifications show significant performance improvement. More importantly, the IMCH-F heat sink showed the optimum performance based on the performance evaluation criteria at Re = 300 and φ=2% (ie, at this point, the heat transfer coefficient is maximum and the pressure drop is minimum). On the other hand, the optimal thermodynamic performance was observed at Re = 700 and φ=4%. The numerical results demonstrated a potential way to exploit nano-suspensions for thermal applications, especially for high-energy flux systems with compact space constraints.  相似文献   
7.
Several parameters affecting the metering accuracy in reaction injection molding (RIM) are identified and their effects evaluated on a laboratory-scale machine (mini-RIM HP-6. Polyurethane Technology of America). The experimental results show that the delay time must be greater than a critical value in order for the system pressure to attain the steady-state value; that the matching of the recirculation and pouring pressure is necessary to have consistent amounts of materials at the calibration or mixing head; and that a variable momentum ratio can have an adverse effect on the metering accuracy. Two approaches are used in the determination of the optimum process parameters for the mini-RIM machine and an attempt is made to explain the effect of momentum ratio variation on the metering accuracy in RIM.  相似文献   
8.
Low-density polyethylene (LDPE) is an environmental problem because it is discarded randomly, and because in dumpsites, it does not readily degrade. This study reports evidence of successful biodegradation by two fungal species (Aspergillus flavus MCP5 and Aspergillus flavus MMP10) and eight bacterial species (Acinetobacter sp. MGP1, Bacillus sp. MGP1, Pseudomonas sp. MMP1, Bacillus sp. MMP5, Staphylococcus sp. MMP10, Bacillus sp. MGP1, Micrococcus sp. MMP5 and Bacillus sp. MMP10). These were demonstrated to have used LDPE as both nitrogen and carbon source. LDPE-users were then characterised and identified using standard microbiological procedures. Biodegradation study was done using selected bacterial and fungal isolates, singly and in consortia, to degrade heat-sterilised ground LDPE in media devoid of carbon source, and carbon and nitrogen source. Biodegradation was monitored using gravimetric methods and Fourier transform infrared spectroscopy. This study revealed some microorganisms can use LDPE as both nitrogen and carbon source in the absence of additives.  相似文献   
9.
Implantation of a total hip replacements (THR) is an effective intervention in the management of arthritis. Modularity at the taper junction of THR was introduced in order to improve the ease with which the surgeon could modify the length of the taper section and the overall length of the replacement. Cobalt chromium (Co–28Cr–6Mo) and titanium (Ti–6Al–4V) alloys are the most commonly used materials for the device. This study investigates the fretting behaviour of both CoCr–CoCr and CoCr–Ti couplings and analyses their damage mechanisms. A reciprocating tribometer ball on plate fretting contact was instrumented with in situ electrochemistry to characterise the damage inflicted by tribocorrosion on the two couplings. Fretting displacements amplitudes of 10, 25 and 50?μm at an initial contact pressure of 1?GPa were assessed. The results reveal larger metallic volume loss from the CoCr–CoCr alloy compared to the CoCr–Ti alloy, and the open circuit potential indicates a depassivation of the protective oxide layer at displacement amplitudes >25?μm. In conclusion, the damage mechanisms of CoCr–CoCr and CoCr–Ti fretting contacts were identified to be wear and fatigue dominated mechanisms respectively.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号