首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学工业   2篇
能源动力   9篇
一般工业技术   2篇
  2021年   2篇
  2018年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Nanoporous hematite (α-Fe2O3) thin films doped with Ti4+ deposited by spray-pyrolysis were successfully used in photoelectrochemical splitting of water for solar hydrogen production. X-ray diffraction, field emission scanning electron microscopy, UV–visible absorption and photoelectrochemical studies have been performed on the undoped and Ti4+ doped hematite thin films. Morphology of α-Fe2O3 thin films was observed to be nanoporous, with increased porosity (pore size ∼12 to 20 nm) on increasing doping concentration. A significant decrease in the bandgap energy from 1.95 to 1.27 eV was found due to doping. α-Fe2O3 film doped with 0.02 M Ti4+ ions exhibited best solar to hydrogen conversion efficiency (photoconversion efficiency) of 1.38% at 0.5 V/SCE. Highest photocurrent densities of 0.34 mA/cm2 at zero bias and 1.98 mA/cm2 at 0.5 V/SCE were obtained by incorporating 0.02 M Ti4+ in α-Fe2O3, which are significantly larger than earlier reported values. Donor density (30.8 × 1020 cm−3) and flatband potential (−1.01 V/SCE) obtained were also maximum for this sample. Hydrogen collected in 1 hr at Pt electrode with the best photoelectrode was 2.44 mL with 150 mW/cm2 visible light source.  相似文献   
2.
Optimum band gap values, favourable band edge positions and stability in the electrolyte are critical parameters required for a semiconductor to have efficient photoelectrode properties. The present investigation carried out on the phase pure α & β MoO3 thin film shows that the low bandgap β-MoO3 possesses a mis-alignment with the water oxidation potential, while a more suitable band alignment is observed for the comparatively large bandgap α-MoO3. Both experimental and DFT calculations show that the valence edge of the orthorhombic (α-MoO3) phase is located at a higher energy (0.9 eV higher in VB-XPS and 1 eV higher in the DOS plots) than the monoclinic (β-MoO3) phase, while the conduction edge value is roughly at the same energy level (?2.5 eV) in both polymorphs. Based on the above investigations, an all oxide heterojunction comprising of β-MoO3/α-MoO3 is found to be suitable for improved PEC performance due to favourable energy band diagram and increased visible light absorption in β-MoO3. Significantly higher cathodic photocurrent is observed for the β-MoO3/α-MoO3 (1.6 mA/cm2 at applied bias of ?0.3VRHE under simulated 1 sun irradiation) as compared to the very low anodic response in β-MoO3 (~1.0 nA/cm2) and α-MoO3 (32 μA/cm2).  相似文献   
3.
A single-step plasma enhanced-chemical vapor deposition (PE-CVD) route for the synthesis of F-doped iron(III) oxide nanomaterials is presented. Growth experiments, performed from a fluorinated Fe(II) β-diketonate precursor on Indium Tin Oxide (ITO) between 200 and 400 °C, yielded columnar β-Fe2O3 arrays with a preferential (100) growth direction. The fluorine content in the deposits could be adjusted by the sole variation of the deposition temperature controlling, in turn, the optical absorption and energy bandgap. Photocurrent measurements and Mott–Schottky analyses, carried out in Na2SO4 solution under one sun illumination, evidenced a conductivity switch from n- to p-type upon increasing fluorine amount in the obtained nanomaterials. The sample photocurrent density, donor content and flatband potential support the hypothesis that a progressive substitution of oxygen by fluorine in the iron(III) oxide lattice can alter electronic structure and extend charge carrier lifetimes, making anion-doped β-Fe2O3 an efficient water oxidation catalyst.  相似文献   
4.
This paper describes the photoelectrochemical studies on nanostructured iron doped titanium dioxide (TiO2) thin films prepared by sol-gel spin coating method. Thin films were characterized by X-ray diffraction, Raman spectroscopy, spectral absorbance, atomic force microscopy and photoelectrochemical (PEC) measurements. XRD study shows that the films were polycrystalline with the photoactive anatase phase of TiO2. Doping of Fe in TiO2 resulted in a shift of absorption edge towards the visible region of solar spectrum. The observed bandgap energy decreased from 3.3 to 2.89 eV on increasing the doping concentration upto 0.2 at.% Fe. 0.2 at.% Fe doped TiO2 exhibited the highest photocurrent density, ∼0.92 mA/cm2 at zero external bias. Flatband potential and donor density determined from the Mott–Schottky plots were found to vary with doping concentration from −0.54 to −0.92 V/SCE and 1.7 × 1019 to 4.3 × 1019 cm−3, respectively.  相似文献   
5.
Process intensification in a membrane reactor is an efficient and compact way to produce hydrogen. A methane-rich gas mixture that simulated the composition of pre-reformed naphtha (PRN; with a steam-to-carbon ratio of 2.7) was reformed at temperatures of 550 °C–625 °C and pressures up to 40 barg. The reactor contained commercial steam reforming catalyst and a 14.8 cm long, 2.6 μm thick Pd-1.8Au (wt. %) membrane on a porous alumina support. Methane conversions approaching 90% were obtained in the membrane reactor at a gas-hourly space velocity of 676 h?1, compared to ≤30% conversion at the same conditions in conventional reactor mode (CM) without withdrawing hydrogen through the membrane. The results were compared to steam methane reforming (SMR) in the membrane reactor at similar conditions. The nitrogen leak through the membrane increased slowly during the testing, because of both pinhole formation and some leakage through the end seals.  相似文献   
6.
We demonstrate the effect of hydrogen plasma treatment on hematite films as a simple and effective strategy for modifying the existing substrate to improve significantly the band edge positions and photoelectrochemical (PEC) performance. Plasma treated hematite films were consist of mixed phases (Fe3O4:α-Fe2O3) which was confirmed by XPS and Raman analysis, treated films also showed higher absorption cross-section and were found to be a promising photoelectrode material. The treated samples showed enhance photocurrent densities with maximum of 3.5 mA/cm2 at 1.8 V/RHE and the photocurrent onset potentials were shifted from 1.68 VRHE (untreated) to 1.28 VRHE (treated). Hydrogen plasma treatment under non-equilibrium conditions induced a valence dynamics among Fe centers in the sub-surface region that was sustained by the incorporation of hydrogen in the hematite lattice as supported by the density functional theory calculations.  相似文献   
7.
8.
Nanostructured α-Fe2O3 thin films were grown by plasma-enhanced chemical vapor deposition (PE-CVD) using iron pentacarbonyl (Fe(CO)5) as precursor. Influence of the plasma parameters on photoelectrochemical (PEC) properties of the resulting hematite thin films toward solar oxidation of water was investigated under one sun illumination in a basic (1 M NaOH) electrolyte. PEC data analyzed in conjunction with the data obtained by scanning electron microscopy, X-ray diffraction and Mott–Schottky analysis showed 100 W plasma power to be an optimal RF-power value for achieving a high photocurrent density of ∼1098 μA/cm2 at 0.9 V/SCE external applied potential. The donor density, flat band potential, grain size and porosity of the films were observed to be highly affected by RF-power, which in turn resulted in enhanced photoresponse.  相似文献   
9.
With the advent of nanotechnology there has been a resurge of interest in αα-Fe2O3, as suitable candidate for photoelectrochemical (PEC) splitting of water to generate hydrogen. This paper describes the enhanced PEC behaviour of nanostructured αα-Fe2O3 thin films modified by various techniques. Nanostructured thin film/pellets of αα-Fe2O3 prepared by various techniques and various dopants were investigated for their photoelectrochemical response. Thin films prepared by spray pyrolysis having particle size of 20–30 nm exhibited better photoresponse as compared to the films prepared by sol–gel methods, which further improved on doping with Zn. These films were further modified by (i) depositing Zn dots on the surface of αα-Fe2O3 films using thermal evaporation method and (ii) irradiating it with 170 MeV Au13+Au13+ ions. When used as electrode in photoelectrochemical cell, a significant increase in the photoresponse of these modified films were observed, details of which are discussed.  相似文献   
10.
An experimental study of the performance of a novel reactor system—termed the hybrid adsorbent-membrane reactor (HAMR)—is described. In the HAMR the reaction and membrane separation steps are coupled with adsorption. It was shown previously by our group for esterification reactions that this system results in significantly improved performance. The focus in this paper is on the use of the HAMR for hydrogen production. We present experimental investigations of the HAMR for the water-gas-shift (WGS) reaction using layered double hydroxides as adsorbents for CO2 and nanoporous H2-selective carbon molecular sieve membranes. The reactor characteristics are investigated for a range of temperatures and pressures relevant to the WGS application, and are compared with the predictions of a mathematical model previously developed by our group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号