首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1932篇
  免费   110篇
  国内免费   7篇
电工技术   56篇
综合类   2篇
化学工业   423篇
金属工艺   44篇
机械仪表   50篇
建筑科学   32篇
矿业工程   2篇
能源动力   173篇
轻工业   97篇
水利工程   8篇
石油天然气   9篇
无线电   232篇
一般工业技术   398篇
冶金工业   178篇
原子能技术   19篇
自动化技术   326篇
  2024年   7篇
  2023年   37篇
  2022年   83篇
  2021年   98篇
  2020年   96篇
  2019年   85篇
  2018年   105篇
  2017年   93篇
  2016年   92篇
  2015年   62篇
  2014年   77篇
  2013年   158篇
  2012年   94篇
  2011年   110篇
  2010年   95篇
  2009年   84篇
  2008年   75篇
  2007年   70篇
  2006年   54篇
  2005年   35篇
  2004年   38篇
  2003年   37篇
  2002年   19篇
  2001年   24篇
  2000年   27篇
  1999年   17篇
  1998年   37篇
  1997年   32篇
  1996年   26篇
  1995年   12篇
  1994年   18篇
  1993年   14篇
  1992年   15篇
  1991年   12篇
  1990年   7篇
  1989年   9篇
  1988年   9篇
  1987年   6篇
  1986年   4篇
  1985年   9篇
  1984年   7篇
  1983年   5篇
  1981年   5篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1977年   8篇
  1976年   6篇
  1975年   3篇
  1974年   3篇
排序方式: 共有2049条查询结果,搜索用时 15 毫秒
1.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
2.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
3.
The influence of cementite spheroidization on the impact toughness and electrochemical properties of a high-carbon steel has been thoroughly investigated in this study. Heavy warm rolling, followed by 2 h of annealing, has resulted in near-complete spheroidization, leading to a microstructure consisting of nano-cementite globules dispersed in the ultrafine-grained ferritic matrix. The Charpy impact test exhibited superior impact toughness with increased spheroidization. It is validated by the presence of abundant dimples in the fractographs of spheroidized specimens, in contrast to the as-received one that experienced a brittle failure due to its lamellar pearlitic structure. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) carried out in a 3.5% NaCl solution revealed that the corrosion resistance of the alloy gets improved with the increase in the degree of spheroidization. This is attributed to the lower susceptibility of the spheroidized specimen to microgalvanic corrosion owing to the minimum area of contact between nano-spheroidized cementite and ferrite, as elucidated with the help of EIS results aided by equivalent electrical circuit model.  相似文献   
4.
Wireless Personal Communications - A dual purpose system is presented in this paper which serves not only as a door closer, but is equally effective for surveillance purposes. The currently...  相似文献   
5.
6.

Floods are common and recurring natural hazards which damages is the destruction for society. Several regions of the world with different climatic conditions face the challenge of floods in different magnitudes. Here we estimate flood susceptibility based on Analytical neural network (ANN), Deep learning neural network (DLNN) and Deep boost (DB) algorithm approach. We also attempt to estimate the future rainfall scenario, using the General circulation model (GCM) with its ensemble. The Representative concentration pathway (RCP) scenario is employed for estimating the future rainfall in more an authentic way. The validation of all models was done with considering different indices and the results show that the DB model is most optimal as compared to the other models. According to the DB model, the spatial coverage of very low, low, moderate, high and very high flood prone region is 68.20%, 9.48%, 5.64%, 7.34% and 9.33% respectively. The approach and results in this research would be beneficial to take the decision in managing this natural hazard in a more efficient way.

  相似文献   
7.
In the recent sub-20 nm technology node, the process variability issues have become a major problem for scaling of MOS devices. We present a design for a strained Si/SiGe FinFET on an insulator using a 3D TCAD simulator. The impact of metal gate work function variability (WFV) on electrical parameters is studied. Such impact of WFV for different mole fractions (x) of the SiGe layer in a strained SOI-FinFET with varying grain size is presented. The results show that as the mole fraction is increased, the variability in threshold voltage (σVT) and off current (σIoff) is decreased; while, the variability of on-current (σIon) is increased. A notable observation is the distribution of electrical parameters approaches a normal distribution for smaller grain sizes.  相似文献   
8.
Tissue engineered grafts show great potential as regenerative implants for diseased or injured tissues within the human body. However, these grafts suffer from poor nutrient perfusion and waste transport, thus decreasing their viability post-transplantation. Graft vascularization is therefore a major area of focus within tissue engineering because biologically relevant conduits for nutrient and oxygen perfusion can improve viability post-implantation. Many researchers used microphysiological systems as testing platforms for potential grafts owing to an ability to integrate vascular networks as well as biological characteristics such as fluid perfusion, 3D architecture, compartmentalization of tissue-specific materials, and biophysical and biochemical cues. Although many methods of vascularizing these systems exist, microvascular self-assembly has great potential for bench-to-clinic translation as it relies on naturally occurring physiological events. In this review, the past decade of literature is highlighted, and the most important and tunable components yielding a self-assembled vascular network on chip are critically discussed: endothelial cell source, tissue-specific supporting cells, biomaterial scaffolds, biochemical cues, and biophysical forces. This paper discusses the bioengineered systems of angiogenesis, vasculogenesis, and lymphangiogenesis and includes a brief overview of multicellular systems. It concludes with future avenues of research to guide the next generation of vascularized microfluidic models.  相似文献   
9.
A mismatch between demand and supply for bandwidth is common in transport carrier networks. This mismatch is generally a result of the disparity between a carrier's capacity buildout and its anticipated customer demand. A carrier with temporary bandwidth deficit or lack of presence in a geographical region and a carrier with surplus capacity in the right locations can be brought together by the emerging bandwidth exchange technology. Bandwidth exchange offers a win-win solution, in which the carrier with a deficit avoids losing revenue by buying capacity from the carrier with surplus, and the latter makes additional revenue by retail sale of its excess capacity. While the concept of real-time purchase and exchange of bandwidth has attracted a lot of attention, many technical challenges stand in the way of making it a reality. The purpose of this article is to provide an engineering framework for enabling real-time bandwidth exchange with committed quality of service and service level agreement among transport carriers. Special emphasis is given to identifying the architectural requirements and the enabling infrastructure necessary for building a viable bandwidth exchange that can be used for creating revenue out of surplus stranded capacity. Indepth analysis of cross-carrier service level agreement specification, capacity publication, route design, and service provisioning are also provided in the article.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号