首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
化学工业   10篇
能源动力   20篇
轻工业   2篇
一般工业技术   1篇
  2018年   1篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Performances of five heat pump dryer (HPD) configurations were studied by computer simulation. The component arrangement covers the fully open, the partially open, and the fully closed systems with external condenser or external cooler. The HPD performance was investigated for high and low drying rate and within the ambient temperature range of 20°C to 40°C. The best operating mode of the HPD depends on both drying rate and ambient condition. For the case of tropical climate and high drying rate, the partially open system is the optimum operating mode in general, except at some particular conditions where the fully open and fully closed systems are recommended. However, the operation for the low drying rate is more complicated, as the optimum configuration is sensitive to the change of ambient temperature.  相似文献   
2.
Commercial immobilized lipases were used for the synthesis of 2‐monoglycerides (2‐MG) by alcoholysis of palm and tuna oils with ethanol in organic solvents. Several parameters were studied, i.e., the type of immobilized lipases, water activity, type of solvents and temperatures. The optimum conditions for alcoholysis of tuna oil were at a water activity of 0.43 and a temperature of 60 °C in methyl‐tert‐butyl ether for ~12 h. Although immobilized lipase preparations from Pseudomonas sp. and Candida antarctica fraction B are not 1, 3‐regiospecific enzymes, they were considered to be more suitable for the production of 2‐MG by the alcoholysis of tuna oil than the 1, 3‐regiospecific lipases (Lipozyme RM IM from Rhizomucor miehei and lipase D from Rhizopus delemar). With Pseudomonas sp. lipase a yield of up to 81% 2‐MG containing 80% PUFA (poly‐unsaturated fatty acids) from tuna oil was achieved. The optimum conditions for alcoholysis of palm oil were similar as these of tuna oil alcoholysis. However, lipase D immobilized on Accurel EP100 was used as catalyst at 40 °C with shorter reaction times (<12 h). This lead to a yield of ~60% 2‐MG containing 55.0‐55.7% oleic acid and 18.7‐21.0% linoleic acid.  相似文献   
3.
A limited number of bacteria can convert oil palm (Elaeis guineensis) sap to hydrogen with satisfactory yield and productivity. In this study, a total of 18 fermentative enriched cultures and 36 newly isolated thermotolerant bacterial strains were compared for hydrogen production from oil palm (OP) sap. The new isolates were obtained from hot springs, palm oil mill effluent and oil palm sap. The test was conducted in three steps: (i) a test for hydrogen production from mixed substrates (cellulose, starch, xylose, and glucose) and OP sap; (ii) a test for substrate concentration tolerance; and (iii) a test for thermotolerance. Five enriched candidates for each of the hydrogen producers were selected according to the criteria defined for the screening test. The hydrogen production of these selected bacterial strains from hot springs were cultivated in batch fermentation of oil palm sap at room temperature (30 ± 2 °C). Five enriched cultures, namely 81RN1, OPS, 85RN5, 89SR3-2 and 112YL1 were found to give high cumulative hydrogen formation of 1085, 1009, 994, 983 and 778 mL H2/L-OP sap, respectively, with the hydrogen content of 29.8, 29.4, 28.7, 27.1 and 27.5%, respectively. PCR–DGGE profiling showed that all these five enriched cultures consisted of species closely related to the genus Clostridium sp. based on the 16S rRNA gene. For pure cultures, the top five hydrogen producers were the isolates encoded as PS-3, PS-4, PS-5, PS-7 and PS-8 exhibiting the hydrogen production of 1973, 1774, 1335, 1170 and 1070 mL H2/L-OP sap, respectively, with the hydrogen content of 33.7, 29.6, 32.5, 31.5 and 26.4%, respectively. Identification of these high hydrogen producers using 16S rRNA sequence matching showed that the isolates PS-3 and PS-8 belonged to Clostridium beijerinckii, while the isolate PS-7 belonged to Clostridium acetobutylicum and the isolates PS-4 and PS-5 belonged to Klebsiella sp. and Klebsiella pneumoniae, respectively. Therefore, the pure culture C. beijerinckii PS-3 exhibited 1.8 folds higher hydrogen production (1973 mL H2/L-OP sap) than the enriched cultures of 81RN1 (1085 mL H2/L-OP sap).  相似文献   
4.
As some previous research works on heat pump dryers (HPD) gave contradictory results, there is a need to review and identify R&D needs and opportunities in HPD. It was found that mathematical modeling cannot ignore the interdependence of the heat pump working fluid and the process air of the dryer. The performances of various HPD configurations with respect to all operating varibles need further investigation. A well defined mathematical model of combined dryer-drying material characteristic is required for the system modeling. The relative specific drying cost and relative useful energy were introduced as the dryer selection criteria. The role of the heat pump in the HPD system, CFC alternatives and non-conventional heat pump cycles using air or steam as working fluids deserve further investigation.  相似文献   
5.
Brick making in developing countries, which relies on biomass fuel, is facing energy shortage. This paper reports a study aiming to develop an energy-efficient brick kiln. The drying, preheating, firing and cooling of bricks were studied by computer simulation of a fixed bed model and resulted in a new design of downdraft brick kiln. The new kiln has four chambers to serve the four processes separately but simultaneously. A heat recovery feature was incorporated in the kiln operation. A kiln was constructed for full-scale experimentation. The experiments showed that the specific energy consumption could be as low as 2·3 MJ kg−1 of brick, which was only half of that presently consumed in traditional open top updraft kilns. The energy efficiency of the new kiln was 62·6% on average. © 1997 by John Wiley & Sons, Ltd.  相似文献   
6.
A catholyte is a key factor to hydrogen production in microbial electrolysis cells (MECs). Among the four groups of catholytes investigated in this study, a 100 mM phosphate buffer solution (PBS) resulted in the highest hydrogen production rate of 0.237 ± 0.031 m3H2/m3/d, followed by 0.171 ± 0.012 m3H2/m3/d with a 134 mM NaCl solution and 0.171 ± 0.004 m3H2/m3/d with the acidified water adjusted with sulfuric acid. The MEC with all catholytes achieved good organic removal efficiency, but the removal rate varied following the trend of the hydrogen production rate. The reuse of the catholyte for an extended period led to a decreasing hydrogen production rate, affected by the elevated pH. The cost of both the acidified water and the NaCl solution was much lower than the PBS, and therefore, they could be a better choice as an MEC catholyte with further consideration of cost reduction and chemical reuse/disposal.  相似文献   
7.
Heat pump dryer characteristics of four configurations, two open and two closed systems, are presented. The results are based on the simulation models developed in Part 1. Emphasis is given to the effects of ambient conditions, recirculating air ratio and evaporator bypass air ratio on the system performance. The criteria for evaluating the system performance are the specific moisture extraction rate (SMER), the moisture extraction rate (MER) and the coefficient of performance (COP). It was found that the ambient conditions and dryer efficiency play an important role in the system behaviour. Optimum performance achieved for one ambient condition cannot be assumed optimum for the others. The recirculating air ratio substantially affects the system performance while the evaporator bypass air ratio shows insignificant effect. © 1997 by John Wiley & Sons, Ltd.  相似文献   
8.
Heat pump dryer (HPD) performance described by computer simulation results in Parts 1 and 2 of this series of papers is here verified by experiments. An HPD designed to be operated in four configurations—two open systems and two partially closed systems—has been built. The variables in the experiments are the air flow rate, the dryer load, the ambient condition (day and night) and, for the partially closed systems, the recirculation air ratio and the evaporator bypass air ratio. The parameters used for the verification are the compressor power, the properties of air entering the dryer, the coefficient of performance, the moisture extraction rate and the specific moisture extraction rate. It is found that the experimental results agree with the simulation results within an acceptable error tolerance. In order to predict the HPD performance accurately, a fine tuning of the compressor model and the pressure drop in two-phase flow of the refrigerant are recommended. © 1997 by John Wiley & sons, Ltd.  相似文献   
9.
10.
A simultaneous saccharification and fermentation (SSF) process was applied for thermophilic bio-hydrogen production from lime-pretreated oil palm trunk (OPT) by Thermoanaerobacterium thermosaccharolyticum KKU19. The SSF hydrogen fermentation conditions were optimized to maximize hydrogen yield (HY). Based on Plackett-Burman design, substrate loading and initial pH had significant effects on HY. The substrate loading and initial pH were further optimized using response surface methodology with a central composite design. The optimum conditions were a substrate loading, enzyme loading, inoculum concentration, initial pH and temperature of 4.6%, 10 filter paper unit (FPU)/g-OPT, 10% (v/v), 6.3 and 50 °C, respectively, which yielded the highest HY of 60.22 mL H2/g-OPT. Structural analysis showed that lime pretreatment and SSF decreased the crystallinity of OPT. Methane production was carried out following the hydrogen production to improve the energy yield from OPT. The results showed that methane production increased total energy yield from 0.65 to 11.79 kJ/g-OPT under the optimal conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号