首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
能源动力   2篇
  2021年   1篇
  2018年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
In this study, a series of BaO-MnOx mixed oxide catalysts were synthesized by the mechanochemical method and employed in lean methane catalytic combustion (MCC) at low temperatures. The synthesized catalysts were characterized by XRD, BET, TGA, FT-IR, H2-TPR, O2-TPD, and FESEM analyses. The results indicated that the 10 wt% BaO-MnOx catalyst with a BET surface area of 25 m2 g?1 possessed the best catalytic performance. The higher activity of the 10 wt% BaO-MnOx catalyst was due to the higher ability to supply oxygen through the components during the MCC process. The light-off temperature corresponding to 50% of the methane conversion was about 330 °C, which was about 50 °C lower than the pure MnOx. Moreover, for the BaO(10)-MnOx catalyst, the 10 and 90% of methane conversion temperatures were about 305 and 427 °C, respectively. Also, the 10 wt% BaO-MnOx catalyst exhibited high catalytic stability under dry feed condition at 450 °C for 50 h. Furthermore, the influence of various parameters such as calcination temperature, feed ratio, GHSV, pretreatment condition, and presence of water vapor in the feedstock was studied on the catalytic performance.  相似文献   
2.
In this study, a series of Ni nano-catalysts supported on Al2O3 and MgO were prepared through the co-precipitation technique. Effects of the Al/Mg ratio on physicochemical characteristics of Ni/Al2O3MgO catalysts were examined. Moreover, catalytic performance was investigated in order to determine the optimum catalyst for H2 production in aqueous phase reforming (APR) of glycerol. It was revealed that, the APR activity of synthesized catalysts strongly depended on the aforementioned ratio. In addition, it was observed that, the catalytic activity of Ni/MgO and Ni/Al2O3 samples were both lower than that of the corresponding mixed oxide supports. Furthermore, it was shown that, amongst the compositionally different prepared mixed oxide materials, the respective catalytic activities increased through enhancing of the Al/Mg ratio. It was demonstrated that the Ni/Al2Mg1 catalyst possessed highest catalytic activity of 92% glycerol conversion and selectivity towards hydrogen production of 76%. Ultimately, it was concluded that, the APR activity lowered in the following order: Ni/Al2Mg1 > Ni/Al1Mg1 > Ni/Al1Mg2 > Ni/Al > Ni/Mg for the understudied synthesized materials.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号