首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学工业   3篇
能源动力   12篇
一般工业技术   1篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
排序方式: 共有16条查询结果,搜索用时 78 毫秒
1.
A free vibration analysis of a polymer electrolyte membrane fuel cell (PEMFC) is performed by modelling the PEMFC as a 20 cm × 20 cm composite plate structure. The membrane, gas diffusion electrodes, and bi-polar plates are modelled as composite material plies. Energy equations are derived based on Mindlin's plate theory, and natural frequencies and mode shapes of the PEMFC are calculated using finite element modelling. A parametric study is conducted to investigate how the natural frequency varies as a function of thickness, Young's modulus, and density for each component layer. It is observed that increasing the thickness of the bi-polar plates has the most significant effect on the lowest natural frequency, with a 25% increase in thickness resulting in a 17% increase in the natural frequency. The mode shapes of the PEMFC provide insight into the maximum displacement exhibited as well as the stresses experienced by the single cell under vibration conditions that should be considered for transportation and stationary applications. This work provides insight into how the natural frequencies of the PEMFC should be tuned to avoid high amplitude oscillations by modifying the material and geometric properties of individual components.  相似文献   
2.
In this study, ex-situ experiments performed with a point injection device are conducted to evaluate water distributions in gas diffusion layer (GDL) materials which serve as porous transport media in polymer electrolyte membrane fuel cells (PEMFCs). In this regard, GDL samples manufactured by SGL Group are placed into the point injection device and visualized by means of synchrotron X-ray radiographic and tomographic imaging. The resulting image data undergoes a coordinate transformation that ascertains water agglomerations in GDL pores with regard to their radial displacements from the injection point. In this way, water transport in two different GDL samples possessing the same structural characteristics, but with unique compression rates, are investigated in terms of in-plane water distribution. The radial displacement analysis indicated that the pore saturation of the compressed GDL is higher in both the micro porous layer (MPL) region and the carbon fiber substrate region than that of the uncompressed GDL. The water agglomerations in the uncompressed GDL are predominantly observed in the vicinity of the injection point, indicating a limited in-plane transport. Conversely, in the compressed case water accumulations are detected far from the injection point, even at the edge of the GDL, pointing out that compression promotes the in-plane transport. Prior to the ex-situ experiments, both GDL samples have undergone an ageing procedure to mimic realistic cell operating conditions.  相似文献   
3.
Vibrations and impact loads are common sources of mechanical damage in transportation applications; however, their impacts on polymer electrolyte membrane fuel cells (PEMFCs) have yet to be fully investigated. In this work, the damage propagation in the membrane electrode assembly (MEA) is investigated under vibration conditions with a focus placed on the interface between the membrane and catalyst layer at the cathode. A numerical model based on the cohesive element approach is developed, and a parametric study is performed to investigate the effects of amplitude and frequency of applied vibrations as well as initial delamination length on damage propagation. Non-linear relationships were found between the damage propagation and these parameters, with the frequency of vibration having the dominant effect on damage propagation at larger amplitudes. This work provides insight into the importance of considering mechanical damage to the MEA under vibration conditions in transportation applications.  相似文献   
4.
Over the past few years, the importance of water management to the successful operation of polymer electrolyte membrane (PEM) fuel cells has stimulated an extensive research focus on liquid water transport and its effect on performance and durability. Empirical methods employed to investigate water transport in the fuel cell have the potential to provide useful feedback for developing empirical correlations and validating numerical models for fuel cell research and development. In this paper, a literature review is provided for the experimental techniques that have been applied to visualize liquid water in operating hydrogen PEM fuel cells and flow fields. The main hypotheses that have been proposed to describe liquid water transport in the gas diffusion layer (GDL) and current challenges will also be discussed.  相似文献   
5.
The present study is dealing with the obtaining of transparent hybrid silica materials encapsulating 5,10,15,20-tetrakis(3,4-dimethoxyphenyl)-21H,23H-porphyrin designated for advanced optoelectronic devices. The porphyrin was synthesized by three methods: an Adler-type reaction between pyrrole and 3,4-dimethoxybenzaldehyde in propionic acid medium; by Lindsey condensation of pyrrole with 3,4-dimethoxybenzaldehyde in the presence of BF3·OEt2 and by a multicomponent reaction by simultaneously using of pyrrole and two different aldehydes: 3,4-dimethoxybenzaldehyde and 3-hydroxybenzaldehyde. The 3,4-dimethoxyphenyl substituted porphyrin was characterized by HPLC, TLC, UV-vis, FT-IR, 1H NMR and 13C NMR analysis. Excitation and emission spectra were also discussed in terms of pH conditions. The hybrid materials, consisting in the porphyrin encapsulated in silica matrices, have been prepared successfully via the two steps acid-base catalyzed hydrolysis and condensation of tetraethylorthosilicate using different approaches of the sol-gel process: in situ, by impregnation and by sonication. The synthetic conditions and the compositions were monitored and characterized by using spectroscopic methods such as FT-IR, fluorescence and UV-vis. Atomic force microscopy (AFM) has been applied to observe the columnar or pyramidal nanostructures which are formed by the immobilization of porphyrin on the silica matrices.  相似文献   
6.
A. Bazylak 《Electrochimica acta》2008,53(26):7630-7637
Based on a pore network representation of porous media, numerical and experimental methods are employed to explore the design of gas diffusion media in order to control and direct water transport. Randomized pore networks with structured biasing in both diagonal and radial directions show a marked influence on liquid water transport through the two-dimensional media. Radial biasing is shown to have the beneficial effect of decreasing the network saturation, which is a desirable quality in fuel cell gas diffusion layers. Similar flow patterns are obtained from both numerical simulations and experiments, and it is found that relatively small radial biasing can yield a 43% decrease in average saturation compared to pore networks without a prescribed radial gradient.  相似文献   
7.
The dynamics of liquid water transport through the gas diffusion layer (GDL) and into a gas flow channel are investigated with an ex situ experimental setup. Liquid water is injected through the bottom surface of the GDL, and the through-plane liquid pressure drop, droplet emergence and droplet detachment are studied. The dynamic behaviour of water transport in and on the surface of the GDL is observed through fluorescence microscopy, and the through-plane liquid pressure drop is measured with a pressure transducer. With an initially dry GDL, the initial breakthrough of liquid water in the GDL is preceded by a substantial growth of liquid water pressure. Post-breakthrough, droplets emerge with a high frequency, until a quasi-equilibrium liquid water pressure is achieved. The droplet emergence/detachment regime is followed by a transition into a slug formation regime. During the slug formation regime, droplets tend to pin near the breakthrough location, and the overall channel water content increases due to pinning and the formation of water slugs. Droplets emerge from the GDL at preferential breakthrough locations; however, these breakthrough locations change intermittently, suggesting a dynamic interconnection of water pathways within the GDL. The experiments are complemented by computational fluid dynamics (CFD) simulations using the volume of fluid method to illustrate the dynamic eruption mechanism.  相似文献   
8.
We studied the interaction of a water droplet with a solid wall on a hydrophobic gas diffusion layer (GDL). Of particular interest is the stability of the droplet as a function of plate wetting properties and the potential for liquid entrapment in the GDL/land contact area. Such transport is of relevance to breakthrough dynamics and convective liquid droplet transport in polymer electrolyte membrane (PEM) fuel cell cathode gas channels. While a variety of complex coupled transport phenomena are present in the PEM fuel cell gas channel, we utilize a very simplified experimental model of the system where a droplet originally placed on a hydrophobic GDL is translated quasistatically across the GDL surface by a solid surface. Transport and entrapment are imaged using fluorescence microscopy. This work provides new insights into droplet behaviour at the GDL/land interface in a PEM fuel cell and suggests that hydrophobic land areas are preferable for mitigating the accumulation of liquid water under the land area of the gas flow channels.  相似文献   
9.
Romosozumab, a humanized monoclonal antibody specific for sclerostin (SOST), has been approved for treatment of postmenopausal women with osteoporosis at a high risk for fracture. Previous work in sclerostin global knockout (Sost−/−) mice indicated alterations in immune cell development in the bone marrow (BM), which could be a possible side effect in romosozumab-treated patients. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young mice receiving sclerostin antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost deficiency on wild-type (WT) long-term hematopoietic stem cells transplanted into older cohorts of Sost−/− mice. Our analyses revealed an increased frequency of granulocytes in the BM of Scl-Ab-treated mice and WT→Sost−/− chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNFα, IL-1α, and MCP-1 in Sost−/− BM serum. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost−/− mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM.  相似文献   
10.
In this work, side view images of liquid–gas–solid interfaces are observed during the evaporation of liquid water droplets on various commercially available untreated gas diffusion layers (GDLs). The change in contact diameter as a function of evaporative volume loss is measured to quantify the unpinning rates of micro-sized droplets. This contact diameter pinning behaviour during evaporation is correlated to the material topography, which is quantified through profilometry measurements. The carbon fibre paper with the smallest average roughness (15 μm) exhibits the strongest degree of pinning (unpinning at a rate of 0.13 mm/μL). Higher average surface roughnesses for felt (30 μm) and cloth yarn (32 μm) result in higher unpinning rates, 0.21 mm/μL and 0.19 mm/μL, respectively. These results indicate that common GDL materials exhibit Cassie–Baxter wetting behaviour, and reduced GDL roughness promotes droplet pinning. The material-specific droplet contact diameter progression should be considered during GDL selection for polymer electrolyte membrane (PEM) fuel cells. This work provides insight into the effect of GDL material properties on gas channel water management, as water droplets are expected to experience similar pinning to that observed in this work within the cathode gas channels of a PEM fuel cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号