首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
建筑科学   2篇
能源动力   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
In this research, an experimental evaluation is conducted on the hydrothermal behavior of water-based manganese ferrite nanofluid flowing in a metal foam tube. For this purpose, manganese ferrite nanoparticles are synthesized, and X-ray diffraction and scanning electron microscopy are implemented to specify the samples for determination of phase and size of nanoparticles. The effects of Reynolds number, Prandtl number, and presence of MnFe2O4 nanoparticles inside the water on the Nusselt number and friction factor have been studied. The experimental analysis shows that the increment of Reynolds number, Prandtl number, and nanoparticles concentration improve the heat transfer performance. The maximum of 19.1% and 10.5% increase in Nusselt number and friction factor have been achieved respectively by dispersion of 2 wt% manganese ferrite nanoparticles inside the deionized water at Reynolds number of 1,000. A hydrothermal index is proposed to consider the thermal and hydrodynamic characteristics of the nanofluid, and it is attained that the convection heat transfer improvement dominates the pressure drop in this work. According to the experimental results, the Nusselt number and friction factor of the nanofluid is modeled as a function of Reynolds number, Prandtl number, and nanoparticles concentration using artificial neural network with an acceptable precision.  相似文献   
2.
Stirling engine is an external combustion engine which uses eternal heat sources like solar radiation for heating a compressible fluid inside cylinders. In the recent years, significant attention is drawn to Stirling engines due to the clear advantages, high efficiency potential, flexible fuel, lower nitrogen oxides, quiet and minimal vibration, high reliability and highest specific output work for any closed regenerative cycle. The third order thermal analysis is one of the analyses which has been applied in several studies which have been carried out on Stirling engines. NSGA-II algorithm is applied to optimise the differential regenerator pressure (bar) and the power output (kW) for a Stirling engine system. In this study, three decision-making techniques are utilised to optimise the solutions, obtained of the results. At last, the employed techniques are compared with the data of an experimental research work.  相似文献   
3.
Nowadays, shortage of fossil fuels resources, especially oil, and also global attention to environmental hazards produced by the internal combustion process have caused extensive researches on the development of renewable energy engine technology. Among all kinds of renewable resources, solar energy Stirling engines have their own special situation for energy generation with lower pollutants and sustainable sources. The Stirling engine is an external combustion engine that uses any external heat source to generate mechanical power. Various parameters affect the performance of the Stirling engine. In this study, artificial neural network (ANN) was applied to estimate the power and torque values obtained from a Stirling heat engine (Philips M102C engine). It employs the Levenberg–Marquardt algorithm for training ANN with back propagation network for estimating the power and torque of the Stirling heat engine. The performances of the imperialist competitive algorithm (ICA)-ANN and ANN-particle swarm optimisation (PSO) are compared with the performance of the ANN based on mean square error (MSE) and correlation coefficient. PSO and ICAs are applied to determine the initial weights of the neural network. The obtained results indicate that ANN-PSO has a better performance than ICA-ANN and ANN alone; also the MSE for the ANN-PSO is lower as well. Considering the results obtained from this study, there is very good agreement between the output of the testing phase of the ANN-PSO model with experimental data and they are very close to each other.  相似文献   
4.
There are various analyses for a solar system with the dish-Stirling technology. One of those analyses is the finite time thermodynamic analysis by which the total power of the system can be obtained by calculating the process time. In this study, the convection and radiation heat transfer losses from collector surface, the conduction heat transfer between hot and cold cylinders, and cold side heat exchanger have been considered. During this investigation, four objective functions have been optimized simultaneously, including power, efficiency, entropy, and economic factors. In addition to the four-objective optimization, three-objective, two-objective, and single-objective optimizations have been done on the dish-Stirling model. The algorithm of multi-objective particle swarm optimization (MOPSO) with post-expression of preferences is used for multi-objective optimizations while the branch and bound algorithm with pre-expression of preferences is used for single-objective and multi-objective optimizations. In the case of multi-objective optimizations with post-expression of preferences, Pareto optimal front are obtained, afterward by implementing the fuzzy, LINMAP, and TOPSIS decision making algorithms, the single optimum results can be achieved. The comparison of the results shows the benefits of MOPSO in optimizing dish Stirling finite time thermodynamic equations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号