首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学工业   5篇
能源动力   3篇
轻工业   2篇
无线电   1篇
一般工业技术   3篇
自动化技术   3篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  1995年   1篇
  1976年   2篇
排序方式: 共有17条查询结果,搜索用时 10 毫秒
1.
Ci L  Suhr J  Pushparaj V  Zhang X  Ajayan PM 《Nano letters》2008,8(9):2762-2766
Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.  相似文献   
2.
A new type of mesoporous silica nanoparticle (MSN) was synthesized in fluoride media via sol–gel technique using TritonX 100 and Tween-20. The surface area and pore volume of the MSN particles were modified by varying the concentration of Tween-20. The prepared MSN nanoparticles with large surface area and pore volume (T-2, T-3) were selected to accommodate the model drug duloxetine hydrochloride (DX) for evaluation of their drug-loading and release abilities. Calcined and DX loaded nanoparticles were characterized by Brunauer–Emmett–Teller technique (BET), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric (TG) analysis and UV-diffuse reflectance (UV-DRS). In vitro release studies proved that the particle displays an initial burst release followed by sustained release for up to 140 h. From the studies it is evident that the synthesized particle may be useful as a carrier for sustained release of active pharmaceutical ingredients (APIs).  相似文献   
3.
As part of a program to study the chemical composition of algal biomasses, the composition of the unsaponifiable matter of the lipids of ten algal species (fiveMyxophyceae and fiveChlorophyceae) was investigated. The total unsaponifiable content, its general composition, and the components of the hydrocarbon fraction are discussed in the present paper. The unsaponifiable content of green algae is constantly higher than that of the blue-green ones, with the exception ofChlorella. In both algal classes, the major components are hydrocarbons and sterols. Blue-green algae are richer in hydrocarbons, whereas the green ones contain higher amounts of sterols. In most of the species examined, at least 48 components are present in the hydrocarbon fraction. Each algal species shows a characteristic gas liquid chromatography pattern, but n-C17 is always one of the most abundant components. Generally, the prokaryotic blue-green algae show a simpler hydrocarbon composition than the eucaryotic green algae, which contain higher amounts of high mol wt components. Unsaturated hydrocarbons are generally present in very limited quantities, with the exception ofSpirulina sp. andChlorella, sp., which contain a C17 alkene. Green algae also contain appreciable amounts of a C27 monoene and of squalene.  相似文献   
4.
5.
Cost-effective fabrication of microfluidic networks require that all components have to be manufactured with up-scalable processes such as reel-to-reel fabrication of foil-based devices. A microvalve design must take into account functional requirements together with manufacturing feasibilities. Here we present the development of a modular polymeric laser structured microvalve. The complete valve structure is designed to be used in a bendable lab-in-foil system. The modular microvalve design consists of three layers: an actuator layer, an interfacing membrane, and a passive microchannel layer to be separately fabricated and then stacked. Different actuator layer concepts are compared out of which a thermal actuation scheme generating sufficient stroke using phase changing paraffin is chosen. The passive layer is designed with a shallow and sufficiently smooth spherical cavity that acts as the valve seat from which paraffin material can reliably retract during solidification. The shape and dimensions of the shallow cavity are derived from the natural membrane deflection and from the channel cross section. It is not essential that all the paraffin within the actuator cavity to be molten for valve closure allowing a high degree of assembly tolerance and inherent sealing of actuator cavity. All the module layers in the current prototype are structured using 3D laser fabrication processes but mass-fabrication methods like reel-to-reel hot-embossing are foreseen as well. A prototype microvalve stack was assembled with a thickness of 1.1 mm which could be further reduced to meet the requirements of extremely flexible lab-on-foil systems. The closed valve is tested up to a pressure of 3 kPa without any measurable leakage. The dynamics of valve closure is evaluated by a new optical characterization method based on image processing of color micrograph sequences taken from the transparent valve.  相似文献   
6.
The present research may facilitate the reduction of the number of conversion steps required to include the low output voltages in an electrokinetic biomass process. Variable thermal conductivity and electroosmosis flow have already established great potential in the thermo-elastic models of various manufacturing industries and have been widely used in energy technologies. As a result, the current framework investigates the characteristics of natural convection flow with the influence of variable thermal conductivity and electroosmosis over an eternity vertical porous plate. Coriolis forces and Hall current effects are considered in the momentum equations, and also thermal radiation and variable thermal conductivity are taken as energy equations. A linear chemical reaction parameter is used in the concentration equation. The equation of Poisson–Boltzmann is exploited to depict the electric potential characteristics within the accelerated plate medium. The pdepe command in Matlab software is used to figure out the numerical solutions to equations about momentum, energy, and concentration. The expressions of fluid transverse velocity, fluid axial velocity, fluid temperature, and concentration profiles are presented as numerical results and also derived vital relevant stream parameters diagrammatically, whereas the numerical values of primary skin friction, secondary skin friction, and Nusselt number are presented in tabular form for various values of pertinent flow parameters. The temperature rises as the strength of the thermal conductivity variable parameter increases. Also, as the values of the Taylor number and the thermal conductivity variable parameter go up, the primary velocity goes down. Similarly, secondary velocity increases in the opposite direction as the Taylor number and thermal conductivity variable parameter increase.  相似文献   
7.
Silicon monoxide (SiO) is attaining extensive interest amongst silicon-based materials due to its high capacity and long cycle life; however, its low intrinsic electrical conductivity and poor coulombic efficiency strictly limit its commercial applications. Here low-cost coal-derived humic acid is used as a feedstock to synthesize in situ graphene-coated disproportionated SiO (D-SiO@G) anode with a facile method. HR-TEM and XRD confirm the well-coated graphene layers on a SiO surface. Scanning transmission X-ray microscopy and X-ray absorption near-edge structure spectra analysis indicate that the graphene coating effectively hinders the side-reactions between the electrolyte and SiO particles. As a result, the D-SiO@G anode presents an initial discharge capacity of 1937.6 mAh g−1 at 0.1 A g−1 and an initial coulombic efficiency of 78.2%. High reversible capacity (1023 mAh g−1 at 2.0 A g−1), excellent cycling performance (72.4% capacity retention after 500 cycles at 2.0 A g−1), and rate capability (774 mAh g−1 at 5 A g−1) results are substantial. Full coin cells assembled with LiFePO4 electrodes and D-SiO@G electrodes display impressive rate performance. These results indicate promising potential for practical use in high-performance lithium-ion batteries.  相似文献   
8.
9.
Model based control schemes use inverse dynamics of the robot arm to produce the main torque component necessary for trajectory tracking. For a model-based controller one is required to know the model parameters accurately. This is a very difficult job especially if the manipulator is flexible. This paper presents a control scheme for trajectory control of the tip of a two arm rigid–flexible space robot, with the help of a virtual space vehicle. The flexible link is modeled as an Euler–Bernoulli beam. The developed controller uses the inertial parameters of the base of the space robot only. Bond graph modeling is used to model the dynamics of the system and to devise the control strategy. The efficacy of the controller is shown through simulated and animation results.  相似文献   
10.
A mathematical model to make a transient thermal analysis and to estimate the incident solar energy for two designs of tubular photobioreactor installed outdoors is presented here. In the first photobioreactor design the tubes were arranged in one plane, whereas in the second the tubes were arranged in two planes. The model was validated by comparing the experimental data and predicted values of culture temperature. Both the input solar energy and culture temperature in a tubular photobioreactor may be predicted with a reasonable degree of accuracy by employing the model. The performance of the two photobioreactors for mass culture of Spirulina was also studied in relation to their design and culture temperature. The average biomass yield obtained in one-plane and two-plane photobioreactors were (dry weight) 23.7 g m?2 day?1 and 27.8 g m?2 day?1 respectively. Such biomass yields corresponded to a volumetric productivity of (dry weight) 0.466 g litre?1 day?1 in the one-plane reactor and 1.5 g litre?1 day?1 in the two-plane reactor. We further observed that biomass yield could be increased by about 21% when the culture temperature was maintained at the optimal value of 35°C compared to another culture in which temperature changed according to the ambient temperature from 20 to 39°C during the day.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号