首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   15篇
电工技术   4篇
综合类   1篇
化学工业   79篇
金属工艺   9篇
机械仪表   5篇
建筑科学   14篇
能源动力   68篇
轻工业   39篇
石油天然气   30篇
无线电   15篇
一般工业技术   50篇
冶金工业   29篇
原子能技术   6篇
自动化技术   22篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   6篇
  2019年   12篇
  2018年   11篇
  2017年   13篇
  2016年   31篇
  2015年   11篇
  2014年   8篇
  2013年   50篇
  2012年   21篇
  2011年   25篇
  2010年   10篇
  2009年   24篇
  2008年   22篇
  2007年   11篇
  2006年   13篇
  2005年   7篇
  2004年   13篇
  2003年   6篇
  2002年   10篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   14篇
  1997年   5篇
  1996年   7篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1987年   1篇
  1976年   2篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
1.
A kinetic study of pyrolysis of dried black liquor was performed using a Netzsch 429 Thermogravimetric Analyzer. It was found that as conversion increases from 10 to 45% the apparent pyrolysis activation energy for black liquor increases from 77.20 to 112.74 KJ/mol. For black liquor the order of reaction was found to be first-order. The reaction rate constant was found to be 2.12×109 min. These results are in agreement with the data reported by other investigators on biomass pyrolysis.  相似文献   
2.
Tunneling projects have their uniqueness in terms of engineering problems. The expertise gained from analyzing these projects establishes a sound basis for future application. This paper conveys experiences gained during the construction and support of the design of the Dicle–Kralkizi water tunnel, Turkey. Tunnel stability problems including overbreaks and surface subsidence are evaluated. An analysis of the breakdowns, factors controlling advance rate and the overall performance of tunnel are covered. The accumulated information presented here is believed to be useful and reliable for a successful tunnel excavation in similar formations.  相似文献   
3.
AISI 5140 low alloy steel was ion nitrided under different process parameters including time (1, 4, 8 and 12 h), temperature (400, 450, 500 and 550 °C) and gas mixture ratio (0.05, 0.33, 1 and 3 N2/H2). By determining the fatigue strength, surface hardness, compound layer thickness and case depth, the optimum working conditions were determined by using a Taguchi design of experiment. After ion nitriding process, it is aimed to maximize fatigue strength, surface hardness and case depth as well as to minimize compound layer thickness. While the optimum conditions were determined, due to the goals (above aims) more than one being, the trade-off among goals was considered. First of all, each goal was optimised, separately. Then, all the goals were optimised together, considering the priority of the goals, and the optimum results were obtained at 0.05 N2/H2 gas mixture ratio, at the temperature of 450 °C and for 12 h process time.  相似文献   
4.
In this study, a novel incremental supervised neural network (ISNN) is proposed for the segmentation of medical images. Performance of the ISNN is investigated for tissue segmentation in medical images obtained from various imaging modalities. Two feature extraction methods based on transform and moments are comparatively investigated to segment the tissues in medical images. Two-dimensional (2D) continuous wavelet transform (CWT) and the moments of the gray-level histogram (MGH) are computed in order to form the feature vectors of ultrasound (US) bladder and phantom images, X-ray computerized tomography (CT) and magnetic resonance (MR) head images. In the 2D-CWT method, feature vectors are formed by the intensity of one pixel of each wavelet-plane of different energy bands. The MGH represents the tissues within the sub-windows by using the spatial variation of image intensities. In this study, the ISNN and Grow and Learn (GAL) network are employed for the segmentation task. It is observed that the ISNN has significantly eliminated the disadvantages of the GAL network in the segmentation of the medical images.  相似文献   
5.
In this study, the dual modulated quartz crystal microbalance (QCM) with heating and cooling control has been developed for the quantitative determination of biological molecules, as a biosensor. On the other hand, since, the Sauerbrey formula is misprinted in some publications, the correct form of formula is also discussed. The proposed QCM biosensor has three main parts, which are the oscillator circuit, temperature control circuit, and the differential frequency measurement unit. Colpitts oscillators with the buffer amplifier, microcontroller (PIC16F877) for the temperature control circuit and a peltier element were used for heating and cooling inside the developed system. Differential frequency measurement is a known technique to compensate environmental effects causing instability of crystals. For this reason, one of the crystals is implemented with oscillatory circuits, i.e., the detector; the other one is used as the reference. The designed system was tested between 8°C and 50°C and frequency shift versus temperature is observed at 0.5 ppm/°C over a given temperature range.  相似文献   
6.
7.
Palm oil biodiesel (POB) is characterized by a very high cold soak filtration time (CSFT), which places the acceptability of this biofuel at risk. Therefore, the effect of four adsorbents, namely diatomaceous earth, natural silicate (NS), neutral bleaching earth (NBE), and acid activated bleaching earth (AABE), at two levels of addition (1 and 5 wt%) or two temperatures (25 and 110 °C) on the precipitate content and CSFT of POB was investigated. The impact on total glycerin content, moisture content, and oxidative stability was also examined. All treatments significantly decreased the precipitate content, total glycerin content, and moisture content, but only treatments with NS, NBE, and AABE at 5 wt% and 25 °C achieved acceptable filterability. The OSI value was also decreased; however, it remained above the ASTM limit. Operational conditions of treatment with AABE were further optimized in a two‐factor, five‐level center composite design. The combination of 0.65 wt% AABE and 10 min at 25 °C decreased CSFT to below the ASTM limit. Lower adsorbent concentrations could be effective down to 0.44 wt%, given a corresponding increase in the contact time up to 30 min.  相似文献   
8.
To evaluate the influence of calcium-hydroxide(CH) with different vehicles on the push-out bond strength of different canal sealers to radicular dentin. 152 decrowned single-rooted human teeth were used. After preparation of root canals with nickel-titanium rotary files, 8 roots served as control groups. Then, the roots were divided as follows: (1) Calasept and (2) Surepaste (n = 72). Roots were further subgrouped according to the CH removal techniques: (1) %17 ethylenediaminetetraacetic acid (EDTA) + rotary file, (2) %17EDTA + hand file, and (3) %17EDTA (n = 24). Eight roots from each group sectioned longitudinally, divided into two pairs and photographed by stereomicroscope (n = 16). The remaining 16 roots in CH intracanal dressing groups were further divided into 2 subgroups according to the sealer used: (1) AH-Plus-jet and (2) Apexit-Plus (n = 8). Bond strengths of the root canal sealers to root canal dentin were measured using a push-out test setup. The data were statistically analyzed using multivariate analysis of variance p = 0.05. The push-out bond strength values were significantly affected by type of vehicle and the removal techniques (p < 0.05). The mean bond strength of AH-Plus-jet was significantly higher than Apexit-Plus, regardless of type of vehicle and the removal techniques (p < 0.05). There was no difference between vehicles on CH removal (p > 0.05). When examining the removal techniques, only irrigation with %17 EDTA left significantly larger amount of residue (p < 0.05). AH-Plus-jet showed better dislocation resistance than Apexit-Plus. Type of vehicle does not play a fundamental role in the degree of persistence of CH residues on the dentin walls. Instrumentation improves the removal efficiency of CH from root canal.  相似文献   
9.
Biogas is produced by anaerobic (oxygen free) digestion of organic materials such as sewage sludge, animal waste, and municipal solid wastes (MSW). As sustainable clean energy carrier biogas is an important source of energy in heat and electricity generation, it is one of the most promising renewable energy sources in the world. Biogas is produced from the anaerobic digestion (AD) of organic matter, such as manure, MSW, sewage sludge, biodegradable wastes, and agricultural slurry, under anaerobic conditions with the help of microorganism. Biogas is composed of methane (55–75%), carbon dioxide (25–45%), nitrogen (0–5%), hydrogen (0–1%), hydrogen sulfide (0–1%), and oxygen (0–2%). The sewage sludge contains mainly proteins, sugars, detergents, phenols, and lipids. Sewage sludge also includes toxic and hazardous organic and inorganic pollutants sources. The digestion of municipal sewage sludge (MSS) occurs in three basic steps: acidogen, methanogens, and methanogens. During a 30-day digestion period, 80–85% of the biogas is produced in the first 15–18 days. Higher yields were observed within the temperature range of 30–60°C and pH range of 5.5–8.5. The MSS contains low nitrogen and has carbon-to-nitrogen (C/N) ratios of around 40–70. The optimal C/N ratio for the AD should be between 25 and 35. C/N ratio of sludge in small-scale sewage plants is often low, so nitrogen can be added in an inorganic form (ammonia or in organic form) such as livestock manure, urea, or food wastes. Potential production capacity of a biogas plant with a digestion chamber size of 500 m3 was estimated as 20–36 × 103 Nm3 biogas production per year.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号