首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   4篇
化学工业   31篇
机械仪表   1篇
能源动力   8篇
轻工业   1篇
无线电   2篇
一般工业技术   8篇
冶金工业   2篇
原子能技术   1篇
自动化技术   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   11篇
  2013年   5篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   2篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
1.
2.
3.
(4‐Ethylphenyl)‐3,5‐ditertiarybutyl‐4‐hydroxybenzylamine, 1‐phenyl‐4‐(3,5‐ditertiarybutyl‐4‐hydroxybenzyl)piperazine, and 1‐(3,5‐ditertiarybutyl‐4‐hydroxybenzyl)piperidine were synthesized and characterized, and their performance in polypropylene copolymer (PPCP) was tested by multiple extrusions in a Brabender plasticorder. The thermooxidative stability of PPCP was assessed by the measurement of oxidative induction time at 200 ± 1°C, and the thermal stability was assessed by observation of the change in the melt flow rate. A comparative study of the synthesized antioxidants with the commercially available antioxidant 2,6‐ditertiarybutyl‐4‐methylphenol was made. The presence of phenolic and amino groups influenced the performance of the antioxidants. The performance of the antioxidants influenced the thermal stability of the PPCP. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1097–1103, 2004  相似文献   
4.
5.
6.
Three low lignin containing bmr 3 derivatives, namely DRT 07K1, DRT 07K6 and DRT 07K15 developed through backcrossing were used along with the parent, bmr 3 source mutant (IS 21888) for evaluation of biohydrogen production. Results demonstrated that biohydrogen production varied amongst bmr derivatives under similar fermentation conditions. Significant negative correlation was observed between lignin content and fermentative biohydrogen production. All bmr derivatives with lower lignin content produced higher levels of biohydrogen compared to source bmr 3 (IS 21888) which has more lignin content. The maximum and a minimum biohydrogen production observed was 72 and 50 ml/g Total Volatile Solids (TVS) for the DRT 07K6 bmr3 derivative and bmr 3 (IS 21888) respectively. Acetate and butyrate were accounted >85% of volatile fatty acids, indicating acid type fermentations. Statistical analysis revealed that all bmr mutant derivatives with respect to source differ significantly in cumulative biohydrogen production, plant height, grain yield and lignin content. Biohydrogen production from biomass associated at least two different levels, one at lignin entanglement another at the polymeric nature of cellulose and hemicellulose. Further studies are necessary to determine the effect of biomass structure associated with different bmr traits on the microbial growth and biohydrogen production rate.  相似文献   
7.
8.
In this study, controlling an anaerobic microbial community to increase the hydrogen (H2) yield during the degradation of lignocelluosic sugars was accomplished by adding linoleic acid (LA) at low pH and reducing the hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR). At pH 5.5 and a 1.7 d HRT, the maximum H2 yield for LA treated cultures fed glucose or xylose reached 2.89 ± 0.18 mol mol−1 and 1.94 ± 0.17 mol mol−1, respectively. The major soluble metabolites at pH 5.5 with a 1.7 day HRT differed between the control and LA treated cultures. A metabolic shift toward H2 production resulted in increased hydrogenase activity in both the xylose (13%) and glucose (34%) fed LA treated cultures relative to the controls. In addition, the Clostridia population and the H2 yield were elevated in cultures treated with LA. A flux balance analysis for the LA treated cultures showed a reduction in homoacetogenic activity which was associated with reducing the Bacteriodes levels from 12% to 5% in the glucose fed cultures and 16% to 10% in the xylose fed cultures. Strategies for controlling the homoacetogens and optimal hydrogen production from glucose and xylose are proposed.  相似文献   
9.
Glucose and xylose are the dominant monomeric carbohydrates present in agricultural materials which can be used as potential building blocks for various biotechnological products including biofuels production. Hence, the imperative role of glucose to xylose ratio on fermentative biohydrogen production by mixed anaerobic consortia was investigated. Microbial catabolic H2 and VFA production studies revealed that xylose is a preferred carbon source compared to glucose when used individually. A maximum of 1550 and 1650 ml of cumulative H2 production was observed with supplementation of glucose and xylose at a concentration of 5.5 and 5.0 g L−1, respectively. A triphasic pattern of H2 production was observed only with studied xylose concentration range. pH impact data revealed effective H2 production at pH 6.0 and 6.5 with xylose and glucose as carbon sources, respectively. Co-substrate related biohydrogen fermentation studies indicated that glucose to xylose ratio influence H2 and as well as VFA production. An optimum cumulative H2 production of 1900 ml for 5 g L−1 substrate was noticed with fermentation medium supplemented with glucose to xylose ratio of 2:3 at pH 6. Overall, biohydrogen producing microbial consortia developed from buffalo dung could be more effective for H2 production from lignocellulosic hydrolysates however; maintenance of glucose to xylose ratio, inoculum concentration and medium pH would be essential requirements.  相似文献   
10.
Biohydrogen from untreated mixed renewable agri-waste using buffalo dung compost is reported. Corn husk (CH) supported 25% higher hydrogen (H2) production and showed the maximum value (62.38%) with p value (1.2 × 10−6) revealing its significance at individual and interactive level, respectively, compared to ground nut shell (GNS) and rice husk (RH). Augmented-simplex-lattice design experimentation revealed that a partial supplementation of RH or GNS to CH improves H2 yield. Multiple-linear-regression analysis indicated that a quadratic model (low p = 0.0023, high F value = 35.99 and R2quadratic = 0.99) was more significant compared to other (linear, cubic and special cubic) models. Acetate and butyrate were accounted >80% of the volatile fatty acids (VFAs). A maximum accumulation of 65.78 ml H2 g−1 TVS was produced using agri-wastes in the ratio of CH:RH:GNS = 70:16:12.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号