首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   5篇
化学工业   10篇
金属工艺   1篇
建筑科学   1篇
能源动力   18篇
轻工业   18篇
无线电   4篇
一般工业技术   2篇
自动化技术   1篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2001年   2篇
  1999年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
Flaking and extruding dehulled soybeans were evaluated as a means of enhancing oil extraction efficiency during enzyme-assisted aqueous processing of soybeans. Cellulase, protease, and their combination were evaluated for effectiveness in achieving high oil extraction recovery from extruded flakes. Aqueous extraction of extruded full-fat soy flakes gave 68% recovery of the total available oil without using enzymes. A 0.5% wt/wt protease treatment after flaking and extruding dehulled soybeans increased oil extraction recovery to 88% of the total available oil. Flaking and extruding enhanced protease hydrolysis of proteins freeing more oil. Treating extruded flakes with cellulase, however, did not enhance oil extraction either alone or in combination with protease. Discrepancies in oil extraction recoveries were encountered when merely considering crude free fat because some oil became bound to denatured protein during extrusion and/or sample drying. Bound fat was unavailable for determination by using the hexane extraction method, but was accounted for by using the acid hydrolysis method for total oil determination. Oil extraction recovery from extruded soybean flakes was affected by oil determination methods, which was not the case for unextruded full-fat soy flour.  相似文献   
2.
Separating Oil from Aqueous Extraction Fractions of Soybean   总被引:6,自引:0,他引:6  
Previous research has shown that enzyme-assisted aqueous extraction processing (EAEP) extracts 88–90% of the total soybean oil from extruded full-fat soy flakes into the aqueous media, which is distributed as cream (oil-in-water emulsion), skim, and free oil. In the present work, a simple separatory funnel procedure was effective in separating aqueous skim, cream and free oil fractions allowing mass balances and extraction and recovery efficiencies to be determined. The procedure was used to separate and compare liquid fractions extracted from full-fat soy flour and extruded full-fat soy flakes. EAEP extracted more oil from the extruded full-fat soy flakes, and yielded more free oil from the resulting cream compared to unextruded full-fat soy flour. Dry matter partitioning between fractions was similar for the two procedures. Mean oil droplet sizes in the cream and skim fractions were larger for EAEP of extruded flakes compared to non-enzymatic AEP of unextruded flour (45 vs. 20 μm for cream; 13 vs. 5 μm for skim) making the emulsions from EAEP of extruded flakes less stable. All major soy protein subunits were present in the cream fractions, as well as other fractions, from both processes. The cream could be broken using phospholipase treatments and 70–80% of total oil in the extruded full-fat flakes was recovered using EAEP and a phospholipase de-emulsification procedure.  相似文献   
3.
B.P. Lamsal  R.G. Koegel 《LWT》2007,40(9):1520-1526
Important physicochemical and functional properties of soluble leaf proteins (SLPs) from alfalfa herbage are presented. Subunits molecular weight (MW) distribution, denaturation temperature, and functional properties like, emulsification, foaming, and solubility are discussed. SLP concentrates were prepared by acid precipitation, and ultrafiltration of clarified alfalfa juice. The MW of major soluble protein component ribulose 1,5, bisphosphate carboxylase/oxygenase was estimated to be around 490 kDa. Denaturation temperature of soluble proteins was observed to be around 70-75 °C. Most of the functional properties were affected by concentrate preparation. Acid-precipitated SLP concentrate showed lowest emulsifying properties and nitrogen solubility. Heat stability of emulsions was good. Foam overrun for SLP concentrate depended on pH and was stable around protein's isoelectric point. Stress relaxation tests on 7/100 g SLP gels indicated that they were softer gels and relaxed faster compared to 13/100 g WPI gels. SLP preparations showed encouraging functional properties.  相似文献   
4.
In this paper, a simple two‐dimensional theoretical model based on enthalpy formulation of a latent heat storage system has been developed to study the effects of thermo physical properties of heat exchanger container materials on the thermal performance of the storage system. Numerical results show that thermal conductivity, specific heat and density of the heat exchanger container materials increases, the melting time of the PCM decreases. Numerical results also show that high value of thermal conductivity of the heat exchanger container materials did not make significant contribution on the melt fraction. It is also found that initial temperature of the PCM does not have very important effects on the melting time, while the boundary wall temperature play an important role during melting. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
5.
This work studied the electronic characteristics of the grains and grain boundaries of indium tin oxide (ITO) thin films using electrostatic and Kelvin probe force microscopy. Two types of ITO films were compared, deposited using radiofrequency magnetron sputtering in pure argon or 99% argon + 1% oxygen, respectively. The average grain size and surface roughness increased with substrate temperature for the films deposited in pure argon. With the addition of 1% oxygen, the increase in the grain size was inhibited above 150°C, which was suggested to be due to passivation of the grains by the excess oxygen. Electrostatic force microscopy and Kelvin probe force microscopy (KPFM) images confirmed that the grain growth was defect mediated and occurred at defective interfaces at high temperatures. Films deposited at room temperature with 1% oxygen showed crystalline nature, while films deposited with pure argon at room temperature were amorphous as observed from KPFM images. The potential drop across the grain and grain boundary was determined by taking surface potential line profiles to evaluate the electronic properties.  相似文献   
6.
Daylighting is one of the basic components of passive solar building design and its estimation is essential. In India there are a few available data of measured illuminance as in many regions of the world. The Indian climate is generally clear with overcast conditions prevailing through the months of June to September, which provides good potential to daylighting in buildings. Therefore, an analytical model that would encompass the weather conditions of Indore was selected. Hourly exterior horizontal and slope daylight availability has been estimated for Indore using daylight modeling techniques based on solar radiation data.  相似文献   
7.
Dependence of the cooling potential of an evaporative cooling tower on the tower parameters (height h, cross-sectional area At, evaporative pad area Ap, packing factor of evaporating pads Fp and flow resistance f) has been investigated. The performance of the tower is studied for two different climates, namely hot-dry and composite, typified by Jodhpur and Delhi.  相似文献   
8.
This research focused on the use of high-power ultrasound prior to soy protein extraction to simultaneously enhance protein and sugar release in the extract. Defatted soy flakes dispersed in water were sonicated for 15, 30, 60 and 120 s using a bench-scale ultrasound unit. The ultrasonic amplitudes used were: 0, 21, 42, 63 and 84 μmpp (peak-to-peak). The respective power densities were 0.30, 0.87, 1.53 and 2.56 W/ml. Scanning electron micrographs of sonicated samples showed the structural disruption of soy flakes. The particle size decreased nearly 10-fold following ultrasonic treatment at high amplitudes. Sonication at high amplitude for 120 s gave the highest increase in total sugar released (50%) and protein yield (46%) when compared with non-sonicated samples (control). Ultrasonic pretreatment was also carried out with and without cooling for temperature moderation. The heat generated during sonication had no significant effect on protein and sugar release from defatted soy flakes. The use of ultrasound can significantly improve protein yield and reduce the overall cost of producing soy protein from flakes.  相似文献   
9.
The stage of maturity for Orthosiphon aritatus (OA) leaves revealed that stage I (young leaves) provided the highest bioactive compounds. Vacuum blanching (VB) for 75?s gave the highest sinensetin (28.4% increment) and eupatorin (21.0% increment) compared with heated water blanching (HWB). The modified Henderson model was the most suitable desorption isotherm model for the OA leaves. The VB and unblanched OA leaves were dried by different drying methods, including convection tray drying (CTD, 40–60°C), heat pump dehumidify drying (HPD, 40–60°C), mixed mode solar drying (64.6°C), and freeze-drying. Three-parameter model (TP) was the best model to explain all drying curves. The drying constant, K in the TP and activation energy were fitted to the Arrhenius model. Effective moisture diffusivities were increased with the VB, drying temperatures, and HPD. The highest specific moisture extraction rate was obtained from the VB and dried in the HPD at 60°C. The quality aspects of sinensetin (10.2% retention), eupatorin (10.7% retention), total phenolics, and antioxidant activity revealed the best quality for the OA leaves pretreated by the VB and dried in the HPD at 60°C and could reduce drying time by 44.8% compared with the CTD. The VB of the OA leaves and dried using the HPD at 60°C were recommended.  相似文献   
10.
Milk protein concentrate powder with 85% protein (MPC85) was jet‐milled to give 2 particle size distributions (that is, JM‐Coarse and JM‐Fine) or freeze‐dried (FD), in order to improve the functional properties of MPC85 for use in high‐protein nutrition (HPN) bars. Volume‐weighted mean diameter decreased from 86 μm to 49, 22, and 8 μm in FD, JM‐Coarse, and JM‐Fine, respectively (P < 0.05). The MPC85 powders modified by jet‐milling and freeze‐drying were significantly denser than the control MPC85 (P < 0.05). Volume of occluded air in the modified powders decreased (P < 0.05) by an order of magnitude, yet only FD possessed a lower volume of interstitial air (P < 0.05). Particle size reduction and freeze‐drying MPC85 decreased its water holding capacity and improved its dispersibility by at least 20%. Contact angle measurements showed that these modifications increased initial hydrophobicity and did not improve wettability. HPN bars made from JM‐Fine or FD were firmer by 40 or 17 N, respectively, than the control on day 0 (P < 0.05). HPN bar maximum compressive force increased by 38%, 33%, and 242% after 42 d at 32 °C when formulated with JM‐Fine, FD, or control MPC85, respectively. HPN bars prepared with JM‐Fine were less crumbly than those formulated with control or FD MPC85. Physically altering the particle structure of MPC85 improved its ability to plasticize within HPN bars and this improved their cohesiveness and textural stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号