首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   29篇
  国内免费   3篇
电工技术   5篇
化学工业   114篇
金属工艺   10篇
机械仪表   7篇
建筑科学   10篇
矿业工程   1篇
能源动力   23篇
轻工业   37篇
石油天然气   1篇
无线电   32篇
一般工业技术   88篇
冶金工业   18篇
原子能技术   1篇
自动化技术   93篇
  2023年   3篇
  2022年   17篇
  2021年   17篇
  2020年   11篇
  2019年   7篇
  2018年   15篇
  2017年   19篇
  2016年   18篇
  2015年   7篇
  2014年   12篇
  2013年   27篇
  2012年   29篇
  2011年   35篇
  2010年   35篇
  2009年   28篇
  2008年   15篇
  2007年   18篇
  2006年   16篇
  2005年   12篇
  2004年   13篇
  2003年   10篇
  2002年   10篇
  2001年   4篇
  2000年   3篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   6篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1964年   1篇
  1958年   3篇
  1956年   1篇
  1955年   1篇
  1954年   1篇
  1950年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
1.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
2.
Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies.  相似文献   
3.
Free radical emulsion polymerization of methyl methacrylate (MMA) and 2‐ethylhexyl acrylate (EHA) results in the synthesis of pressure‐sensitive adhesives (PSAs) with good tack properties. Management of both the copolymer composition and the polymerization process allows one to control the behavior of the PSA. Semicontinuous (SC) processes create polymer particles whose instantaneous composition is close to that of the feed particle The SC Mixture process (continuous feeding with comonomer blends) affords nearly homogeneous latex particles and PSA films. The SC Gradient process (separate feedings at inversely varying rates) affords heterogeneous particles and films. The Batch process leads to somewhat heterogeneous films, but the hard (MMA‐rich) microdomains are made compatible with their soft (EHA‐rich) matrix because of the assumed formation of tapered‐type copolymers. Tack measurements indicate the importance of the particle and film structures. Too much hardness or softness leads to unacceptable lacks of adhesion and cohesion, respectively. Homogeneous structures prove adequate, but their tack properties collapse with rising temperature. Heterogeneous structures, with extensive phase segregation, prove unsatisfactory because they lack adhesion and cohesion. Finally, the association of well‐balanced composition and compatible heterogeneity is the criterion for suitable PSA behavior. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2749–2756, 2003  相似文献   
4.
In this paper, a low complexity data demodulation algorithm is proposed that requires time of arrival information of the received signal exclusively. As an application example, the algorithm is applied to an ultra-wideband impulse radio communication system with pulse position modulation. The algorithm is insensitive to a common time delay for all pulses, that means, it does not require an accurate synchronization between the transmitter and the receiver. For the performance estimation, only a symbol synchronization is assumed, i.e., that there is a priori knowledge which pulse marks the beginning of a received data symbol. The performance of the proposed algorithm is evaluated for straightforward time of arrivals estimators, such as a maximum detector or a threshold detector. It is shown that the proposed algorithm outperforms a least squares algorithm in all considered scenarios. In particular, an increased robustness against additive white Gaussian noise, impulse like noise, and multiuser interference is demonstrated as well as an improved performance for multipath propagation channels.  相似文献   
5.
Water at the polymer/substrate interface is often the major cause of adhesion loss in coatings, adhesives, and fiber-reinforced polymer composites. This study critically assesses the relationship between the interfacial water layer and the adhesion loss in epoxy/siliceous substrate systems. Both untreated and silane-treated Si substrates and untreated and silane-treated E-glass fibers were used. Thickness of the interfacial water layer was measured on epoxy/Si systems by Fourier transform infrared-multiple total internal reflection (FTIR-MTIR) spectroscopy. Adhesion loss of epoxy/Si systems and epoxy/E-glass fiber composites was measured by peel adhesion and short-beam shear tests, respectively. Little water accumulation at the epoxy/Si substrate interface was observed for silane-treated Si substrates, but about 10 monolayers of water accumulated at the interface between the epoxy and the untreated Si substrate following 100 h of exposure at 24 °C. More than 70% of the initial epoxy/untreated Si system peel strength was lost within 75 h of exposure, compared with 20% loss after 600 h for the silane-treated Si samples. Shear strength loss in composites made with untreated E-glass fiber was nearly twice that of composites fabricated with silane-treated fiber after 6 months of immersion in 60 °C water. Further, the silane-treated composites remained transparent, but the untreated fiber composites became opaque after water exposure. Evidence from FTIR-MTIR spectroscopy, adhesion loss, and visual observation strongly indicated that a water layer at the polymer/substrate interface is mostly responsible for the adhesion loss of epoxy/untreated siliceous substrate systems and epoxy/untreated glass fiber composites and that FTIR-MTIR is a viable technique to reliably and conveniently assess the adhesion loss attributable to water sorption at the interface.  相似文献   
6.
In a context of cost reduction, in situ filament winding of thermoplastic matrix composites becomes an appealing process. As residual stresses could considerably affect the produced part, models were proposed to predict process-induced residual stresses. After developing a validated thermal model of the process, mainly three different aspects are here addressed: the continuous bonding occurring during the process, the effect of the processed layer on the structure, and the effect of the curvature of the mandrel. While stresses coming from the continuous bonding appeared to be negligible, consequent levels of stresses can be achieved due to an iterative compression of the structure by the tow (supposed to be under tension). The mandrel properties and the tow tension profile followed during winding are essential parameters that might induce several different stress states. A comparison between measured and computed end-to-end openings of split rings illustrates the accuracy of the proposed models.  相似文献   
7.
Supercritical‐fluids science and technology predate all the approaches that are currently established for graphene production by several decades in advanced materials design. However, it has only recently been proposed as a plausible approach for graphene processing. Since then, supercritical fluids have emerged into contention as an alternative to existing technologies because of their scalability and versatility in processing graphene materials, which include composites, aerogels, and foams. Here, an overview is presented of such materials prepared through supercritical fluids from an advanced materials science standpoint, with a discussion on their fundamental properties and technological applications. The benefits of supercritical‐fluid processing over conventional liquid‐phase processing are presented. The benefits include not only better performances for advanced applications but also environmental issues associated with the synthesis process. Nevertheless, the limitations of supercritical‐fluid processing are also stressed, along with challenges that are still faced toward the achievement of the great expectations from graphene materials.  相似文献   
8.
Recent advances in computing technology have brought multimedia information processing to prominence. The ability to digitize, store, retrieve, process, and transport analog information in digital form has changed the dimensions of information handling. Several architectural and network configurations have been proposed for efficient and reliable digital video delivery systems. However, these proposals succeed only in addressing subsets of the whole problem. In this paper, we discuss the characteristics of video services. These include Cable Television, Pay-Per-View, and Video Repository Centers. We also discuss requirements for Video On Demand services. With respect to these video services, we analyze two important video properties: image quality and response time. We discuss and present configurations of a Digital Video Delivery System (DVDS) from three general system components - servers, clients, and connectivities. Pertinent issues in developing each component are also analyzed. We also present an architecture of a DVDS that can support the various functionalities that exist in the various video services. Lastly, we discuss data allocation strategies which impact performance of interactive video on demand (IVOD). We present preliminary results from a study using a limited form of mirroring to support high performance IVOD.  相似文献   
9.
We address the problem of learning text categorization from a corpus of multilingual documents. We propose a multiview learning, co-regularization approach, in which we consider each language as a separate source, and minimize a joint loss that combines monolingual classification losses in each language while ensuring consistency of the categorization across languages. We derive training algorithms for logistic regression and boosting, and show that the resulting categorizers outperform models trained independently on each language, and even, most of the times, models trained on the joint bilingual data. Experiments are carried out on a multilingual extension of the RCV2 corpus, which is available for benchmarking.  相似文献   
10.
This paper describes a method for spatial representation, place recognition and qualitative self-localization in dynamic indoor environments, based on omnidirectional images. This is a difficult problem because of the perceptual ambiguity of the acquired images, and their weak robustness to noise, geometrical and photometric variations of real world scenes. The spatial representation is built up invariant signatures using Invariance Theory where we suggest to adapt Haar invariant integrals to the particular geometry and image transformations of catadioptric omnidirectional sensors. It follows that combining simple image features in a process of integration over visual transformations and robot motion, can build discriminant percepts about robot spatial locations. We further analyze the invariance properties of the signatures and the apparent relation between their similarity measures and metric distances. The invariance properties of the signatures can be adapted to infer a hierarchical process, from global room recognition to local and coarse robot localization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号