首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   3篇
  国内免费   4篇
电工技术   4篇
化学工业   21篇
金属工艺   11篇
机械仪表   1篇
建筑科学   4篇
能源动力   7篇
轻工业   11篇
无线电   4篇
一般工业技术   19篇
冶金工业   1篇
原子能技术   6篇
自动化技术   2篇
  2021年   1篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   7篇
  2010年   11篇
  2009年   9篇
  2008年   4篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1985年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
1.
Bromination and subsequent ethylenediamine substitution of the CC double bond in mesoporous ethylenesilica were carried out to explore the characteristics of this periodic mesoporous organosilica. The structures of the products (BrPMO and EDA–BrPMO, respectively) were analysed by IR, Br K-edge EXAFS and NMR spectroscopies, as well as X-ray diffraction and nitrogen adsorption. We showed (1) that the formulae of the two products that formed were [CHBrSiO1.5]0.45[CHSiO1.5]0.55 and [NH2CH2CH2NHCHSiO1.5]0.05 [CHBrSiO1.5]0.40[CHSiO1.5]0.55, respectively, (2) that the addition of Br2 at room temperature occurred on the CC double bonds with disturbing the framework structure, (3) that IR absorption band of CC bonds that reacted with Br2 is significantly different from that of inactive CC bond, (4) that the length of the C–Br bond was considerably longer than in conventional alkyl bromides, and (5) that a large proportion of the ν(C–Br) band remained at the same position in the IR absorption spectrum after the ethylenediamine (EDA) substitution, while a new ν(C–Br) absorption also appeared. The mechanisms of these reactions are discussed at both the micro and mesoscopic levels.

Arsenate adsorption on EDA–BrPMO, in which the EDA is directly bound to the “surface” of the mesopores, was compared with adsorption on EDA–Pr–PMO, which was prepared by the direct synthesis of 3-chloropropyl-functionalized mesoporous ethanesilica followed by the substitution of Cl with EDA. The strength of the adsorption, as measured with the distribution coefficient, was greater for the former adsorbent than the latter. The origin of this difference was attributed to the distance between amino group and the surface.  相似文献   

2.
The calibration of discrete element method (DEM) simulations is typically accomplished in a trial-and-error manner. It generally lacks objectivity and is filled with uncertainties. To deal with these issues, the sequential quasi-Monte Carlo (SQMC) filter is employed as a novel approach to calibrating the DEM models of granular materials. Within the sequential Bayesian framework, the posterior probability density functions (PDFs) of micromechanical parameters, conditioned to the experimentally obtained stress–strain behavior of granular soils, are approximated by independent model trajectories. In this work, two different contact laws are employed in DEM simulations and a granular soil specimen is modeled as polydisperse packing using various numbers of spherical grains. Knowing the evolution of physical states of the material, the proposed probabilistic calibration method can recursively update the posterior PDFs in a five-dimensional parameter space based on the Bayes’ rule. Both the identified parameters and posterior PDFs are analyzed to understand the effect of grain configuration and loading conditions. Numerical predictions using parameter sets with the highest posterior probabilities agree well with the experimental results. The advantage of the SQMC filter lies in the estimation of posterior PDFs, from which the robustness of the selected contact laws, the uncertainties of the micromechanical parameters and their interactions are all analyzed. The micro–macro correlations, which are byproducts of the probabilistic calibration, are extracted to provide insights into the multiscale mechanics of dense granular materials.  相似文献   
3.
This paper presents a novel analytical solution for geotextile-wrapped soil based on a comprehensive numerical analysis conducted using the discrete element method (DEM). By examining the soil–geotextile interface friction, principal stress distribution, and stress–strain relations of the constituent soil and geotextile in the DEM analysis, a complete picture of the mechanical characterization of geotextile-wrapped soil under uniaxial compression is first provided. With these new insights, key assumptions are verified and developed for the proposed analytical solution. In the DEM analysis, a near-failure state line that predicts stress ratios relative to the maximums at failure with respect to deviatoric strain is uniquely identified; dilation rates are found to be related to stress ratios via a single linear correlation regardless of the tensile stiffness of the geotextile. From these new findings, the assumptions on the stress-state evolution and the stress–dilatancy relation are developed accordingly, and the wrapped granular soil can therefore be modeled as a Mohr–Coulomb elastoplastic solid with evolving stress ratio and dilation rate. The development of the proposed analytical model also demonstrates an innovative approach to take advantage of multiscale insights for the analytical modeling of complex geomaterials. The analytical model is validated with the DEM simulation results of geotextile-wrapped soil under uniaxial compression, considering a wide range of geotextile tensile stiffnesses. To further examine the predictive capacity of the analytical model, the stress–strain response under triaxial compression conditions is solved analytically, taking both different confining pressures and geotextile tensile stiffnesses into account. Good agreement is obtained between the analytical and DEM solutions, which suggests that the key assumptions developed in the uniaxial compression conditions also remain valid for triaxial compression conditions.  相似文献   
4.
Highly monodisperse polystyrene nanoparticles with mean diameters of less than 100 nm are synthesized via aqueous emulsion polymerization using an amphoteric initiator (VA-057) in the presence of sub-millimolar concentrations of anionic surfactant. Since the net charge on the initiator is almost zero at neutral pH, the resultant latex particle size is mainly determined by surfactant adsorption. Polymerizations were performed in the presence of a range of anionic surfactants with differing critical micelle concentrations (CMC) by varying the concentrations of surfactant, initiator and monomer, and also the ionic strength. Sodium dodecyl benzene sulfonate (SDBS), sodium hexadecyl sulfate (SHS), and sodium octadecyl sulfate (SOS) have relatively low CMCs and so enable formation of highly monodisperse nanoparticles at relatively low (sub-millimolar) surfactant concentrations, CS (i.e. below the CMC in each case). Empirically, it was found that the particle number, Np, and coefficient of variation of the particle size, CV, were strongly dependent on the CS/CMC ratio: Np increased almost in proportion with the square of this ratio, while the CV exhibited a minimum at approximately CS/CMC = 0.20. Higher ionic strength reduced the particle size, which is consistent with the above relationship because the addition of salt lowers the CMCs of ionic surfactants. Polymer latex particles produced using such formulations form highly regular, close-packed colloidal arrays.  相似文献   
5.
In the ITER Engineering Design Activity (EDA), four NB3Sn model coils were developed and successfully tested. However, it was revealed that the critical current of the conductor degraded with the increase of electromagnetic force. One of the explanations of this phenomenon is a strand bending caused by enormous electromagnetic force. The authors therefore developed a simulation code using the distributed circuit model to investigate dependency of the critical current performance on the periodic bending deformation. The simulation results were in good agreement with the experiments. The dependence of the critical current on the periodic transverse load, temperature, periodic load pitch, thickness of Ta barrier which prevents Cu stabilizer from being contaminated by Sn, twist pitch of the strand, and RRR of the bronze matrix was investigated using the developed code. The results showed that the critical current degraded less with decreasing the pitch of the transverse load and increasing the Ta barrier thickness. It suggests that the shorter cabling pitch and the larger bending stiffness prevent the critical current degradation. © 2010 Wiley Periodicals, Inc. Electr Eng Jpn, 171(3): 7–15, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20923  相似文献   
6.
γ—TiAl单晶中,<011]超点阵位错的运动方向同晶体取向有关、当沿极射投影图001一110—010单位三角形的001-111-021区域中的取向变形时,SISF偏位错为领先位错;而沿三角形中其余区域中的取向变形时,APB偏位错为领先位错.在反常温度区域中(即超点阵位错开动的温度范围内),前者的CRSS较高,形变的热激活焓也较高,<011超点陈位错的脱钉过程更为困难,造成CRSS反常上升的速率较快.  相似文献   
7.
A bis(phenoxyimine) group 4 transition metal catalyst (now known as FI catalysts) can discern ethylene from a mixture of ethylene and propylene at more than 99% selectivity. Denisty function theory (DFT) calculations revealed a spatially confined reaction site in the transition states of the migratory insertion which is just the right size for an ethylene molecule but too small for a propylene one. The substituents adjacent to the phenoxy‐oxygens are of crucial importance in developing the size/shape‐selectivity.  相似文献   
8.
Local density of states (LDOS) is obtained by the first principles calculation based on the density functional theory on the Si(0 0 1)2 × 1 surface and on the surface with an Al dimer. At an Al dimer, LDOS has a high intensity in the conduction band region, which cannot be seen on the Si(0 0 1)2 × 1 surface. This tendency is observed in STS measurements as well. The possibility for a microelementary analysis is presented by applying this method to other metal atoms on the Si surface. Furthermore, it is pointed out that STS measurements should be always performed at the same tip-sample separation to obtain reproducible STS spectrums.  相似文献   
9.
We report on the experimental observation of surface plasmon resonance in Cu nanowires fabricated by shadow deposition method. When the incident light is polarized perpendicular to the wire axes, plasmon maxima appeared at about 2.3 eV in the absorption spectra. Plasmon resonance appeared at lower photon energy when the incident light is polarized parallel to the wire axes. Resonance peaks move to lower energy when the nanowire widths are increased. We have found that finite-difference time-domain (FDTD) simulation gives better results than Maxwell–Garnett model in explaining the relation between the light polarization and the energies of the observed absorption maxima.  相似文献   
10.
Spherical Si solar cell, which is made up of Si spheres with a diameter of approximately 1.0 mm, is expected to be a promising candidate for low consumption of Si feedstock and simple process technology. This paper describes the formation process and the structure of a concentrator module in detail. The concentrator lens was formed by casting with ultraviolet light hardening resin. The concentration ratio was 4.4 times and the pitch between the spheres was 2.0 mm. By this module design, it was possible to realize a consumption of the Si feedstock of about 3.0 g/W. Conversion efficiencies of 11.3% from single-sphere cell, 8.5% from a 23-spheres module and 5.2% from a 105-spheres module under AM1.5, 100 mW/cm2 illumination were achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号