首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学工业   1篇
能源动力   2篇
自动化技术   3篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2016年   1篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 46 毫秒
1
1.
Here, an investigation of MHD Couette flow of a chemically reacting viscoelastic fluid past a deformable porous layer with entropy generation using Walters liquid model has been considered. A binary, homogeneous, and isotropic mixture of fluid and solid phases in the porous medium is considered. The impact of heat source parameter and Soret effect are taken into account. The governing equations are solved analytically to obtain the expressions for solid displacement, fluid velocity, temperature, and concentration. The impact of relevant parameters on the flow system, temperature, concentration, mass transfer flux, entropy generation number, and Bejan number are discussed graphically. It is observed that solid displacement enhances due to the growth of drag and viscoelastic parameter, while it reduces due to rising volume fraction parameter. Fluid velocity rises when the volume fraction parameter increases. Rising Brinkmann number enhances the temperature, while Brinkmann number and Soret number reduces the species concentration. The irreversibility of heat transfer dominates the flow near the channel plates, while the effect of fluid friction irreversibility can be observed within the channel centerline region.  相似文献   
2.
3.
4.
Alpha-helices constitute the largest class of protein secondary structures and play a major role in mediating protein-protein interactions. Development of stable mimics of short alpha-helices would be invaluable for inhibition of protein-protein interactions. This Account describes our efforts in developing a general approach for constraining short peptides in alpha-helical conformations by a main-chain hydrogen bond surrogate (HBS) strategy. The HBS alpha-helices feature a carbon-carbon bond derived from a ring-closing metathesis reaction in place of an N-terminal intramolecular hydrogen bond between the peptide i and i + 4 residues. Our approach is centered on the helix-coil transition theory in peptides, which suggests that the energetically demanding organization of three consecutive amino acids into the helical orientation inherently limits the stability of short alpha-helices. The HBS method affords preorganized alpha-turns to overcome this intrinsic nucleation barrier and initiate helix formation. The HBS approach is an attractive strategy for generation of ligands for protein receptors because placement of the cross-link on the inside of the helix does not block solvent-exposed molecular recognition surfaces of the molecule. Our metathesis-based synthetic strategy utilizes standard Fmoc solid phase peptide synthesis methodology, resins, and reagents and provides HBS helices in sufficient amounts for subsequent biophysical and biological analyses. Extensive conformational analysis of HBS alpha-helices with 2D NMR, circular dichroism spectroscopies and X-ray crystallography confirms the alpha-helical structure in these compounds. The crystal structure indicates that all i and i + 4 C=O and NH hydrogen-bonding partners fall within distances and angles expected for a fully hydrogen-bonded alpha-helix. The backbone conformation of HBS alpha-helix in the crystal structure superimposes with an rms difference of 0.75 A onto the backbone conformation of a model alpha-helix. Significantly, the backbone torsion angles for the HBS helix residues fall within the range expected for a canonical alpha-helix. Thermal and chemical denaturation studies suggest that the HBS approach provides exceptionally stable alpha-helices from a variety of short sequences, which retain their helical conformation in aqueous buffers at exceptionally high temperatures. The high degree of thermal stability observed for HBS helices is consistent with the theoretical predictions for a nucleated helix. The HBS approach was devised to afford internally constrained helices so that the molecular recognition surface of the helix and its protein binding properties are not compromised by the constraining moiety. Notably, our preliminary studies illustrate that HBS helices can target their expected protein receptors with high affinity.  相似文献   
5.
In this Exa byte scale era, data increases at an exponential rate. This is in turn generating a massive amount of metadata in the file system. Hadoop is the most widely used framework to deal with big data. Due to this growth of huge amount of metadata, however, the efficiency of Hadoop is questioned numerous times by many researchers. Therefore, it is essential to create an efficient and scalable metadata management for Hadoop. Hash-based mapping and subtree partitioning are suitable in distributed metadata management schemes. Subtree partitioning does not uniformly distribute workload among the metadata servers, and metadata needs to be migrated to keep the load roughly balanced. Hash-based mapping suffers from a constraint on the locality of metadata, though it uniformly distributes the load among NameNodes, which are the metadata servers of Hadoop. In this paper, we present a circular metadata management mechanism named dynamic circular metadata splitting (DCMS). DCMS preserves metadata locality using consistent hashing and locality-preserving hashing, keeps replicated metadata for excellent reliability, and dynamically distributes metadata among the NameNodes to keep load balancing. NameNode is a centralized heart of the Hadoop. Keeping the directory tree of all files, failure of which causes the single point of failure (SPOF). DCMS removes Hadoop’s SPOF and provides an efficient and scalable metadata management. The new framework is named ‘Dr. Hadoop’ after the name of the authors.  相似文献   
6.
In this study, we numerically explore the impact of varying viscosity and thermal conductivity on a magnetohydrodynamic flow problem over a moving nonisothermal vertical plate with thermophoretic effect and viscous dissipation. The boundary conditions and flow-regulating equations are converted into ordinary differential equations with the aid of similarity substitution. The MATLAB bvp4c solver is used to evaluate the numerical solution of the problem and it is validated by executing the numerical solution with previously published studies. The impacts of several factors, including the magnetic parameter, Eckert number, heat source parameter, thermal conductivity parameter, stratification parameter, Soret, Dufour, Prandtl number, and Schmidt number are calculated and shown graphically. Also, the skin friction coefficient, Nusselt number, and Sherwood number are calculated. Fluid velocity, temperature, and concentration significantly drop as the thermophoretic parameter and thermal stratification parameter increases. As thermal conductivity rises, it is seen that the velocity of the fluid and temperature inside the boundary layer rise as well. Also, the Soret effect drops temperature and concentration profile. The applications of this type of problem are found in the processes of nuclear reactors, corrosion of heat exchangers, lubrication theory, and so forth.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号