首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
化学工业   8篇
机械仪表   4篇
建筑科学   1篇
能源动力   3篇
轻工业   2篇
无线电   5篇
一般工业技术   12篇
原子能技术   6篇
自动化技术   2篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   9篇
  2007年   1篇
  2006年   2篇
  2003年   3篇
排序方式: 共有43条查询结果,搜索用时 46 毫秒
1.
When a cleaning blade in a laser printer is excessively deformed, immoderate permanent set can result, leading to weaker nip pressure between the cleaning blade and OPC drum that worsens its cleaning performance and printing quality. In this study, the correlation of the permanent set with stress and strain was investigated through tensile tests with rubber test specimens. Based on the experimental results, the maximum von-Mises stress value was used to quantify the permanent set. A design optimization problem was formulated to minimize the maximum von-Mises stress while satisfying the design constraints for maintaining appropriate contact between the cleaning blade and the OPC drum. We employed metamodel-based design optimization using design of experiments, metamodeling and an optimization algorithm to circumvent the difficulty of structural analyses at some design points. Using the proposed design approach, the optimal maximum von-Mises stress was reduced by 40.2 % compared to the initial stress value while all the design constraints were satisfied. In order to verify the validity of our design optimization result, we manufactured the cleaning blades according to the optimum design solution and performed permanent set and printer tests. The test results clearly showed the validity of our design optimization result.  相似文献   
2.
Structural color (SC) arising from a periodically ordered self-assembled block copolymer (BCP) photonic crystal (PC) is useful for reflective-mode sensing displays owing to its capability of stimuli-responsive structure alteration. However, a set of PC inks, each providing a precisely addressable SC in the full visible range, has rarely been demonstrated. Here, a strategy for developing BCP PC inks with tunable structures is presented. This involves solution-blending of two lamellar-forming BCPs with different molecular weights. By controlling the mixing ratio of the two BCPs, a thin 1D BCP PC film is developed with alternating in-plane lamellae whose periodicity varies linearly from ≈46 to ≈91 nm. Subsequent preferential swelling of one-type lamellae with either solvent or non-volatile ionic liquid causes the photonic band gap of the films to red-shift, giving rise to full-visible-range SC correlated with the pristine nanostructures of the blended films in both liquid and solid states. The BCP PC palette of solution-blended binary solutions is conveniently employed in various coating processes, allowing facile development of BCP SC on the targeted surface. Furthermore, full-color SC paintings are realized with their transparent PC inks, facilitating low-power pattern encryption.  相似文献   
3.
Ordered microporous carbons containing dispersed platinum nanoparticles were fabricated and chosen as suitable models to investigate micro-structure development and hydrogen transport properties of zeolite-templated carbons. X-ray photoelectron spectroscopy analysis revealed that the enhanced heat of adsorption is related to the narrow micro-channels templated from the zeolite and the presence of certain CO groups on the carbon. The lack of a well-defined and intense rotational transition line and the persistent broad H2 recoil spectrum in neutron scattering results suggests a distribution of binding sites. Most interestingly, hydrogen diffusion occurs on two time scales, consisting of a fast liquid-like jump diffusion on the timescale of picoseconds along with an even faster bulk-like diffusion. The liquid-like motion is characterized by a diffusion constant of (2.1 ± 0.3) × 10−8 m2/s with an activation energy of ca. 77 K; both values indicate somewhat lower mobility than similar dynamics of H2 on nanotubes, activated carbon XC-72, or Grafoil, yet greater mobility than that of bulk liquid. These unusual characteristics for hydrogen in carbons are believed to arise from the network of narrow pores in this zeolite-templated image of the zeolite. In fact, the diffusion constants of the templated carbons are extremely similar to those measured for zeolite 13X.  相似文献   
4.
We report NMR lineshape, spin-lattice relaxation time T 1, and spin-spin relaxation time T 2 data at 17 MHz (8.07 T) for 89Y in the copper-oxide spin-chain compound Ca2+x Y2–x Cu5O10. For x=0, a broad, asymmetric line with width 90 kHz is observed for T=250–300 K. The spectra exhibit an appreciable average shift (H/H+0.7%) and sharpen at lower temperature, possibly due to increasing intrachain ferromagnetic correlations. T 1 and T 2 decrease with decreasing temperature. The Tl data imply a short correlation-time limit, with e=3–5×10–11 s. The T 2 data apparently include a contribution from dipolar interactions with copper nuclei. Relaxation time data for a doped (x=0.5) compound surprisingly show more rapid relaxation.  相似文献   
5.
We have investigated the decomposition of excess sludge generated in a membrane bioreactor using a turbulent jet flow ozone contactor (TJC), which induced both hydrodynamic cavitation and ozonation reactions. We monitored the effects of various TJC operating parameters on the properties of the sludge, including the particle sizes, the particle size distribution, and the levels of soluble COD, total COD, and mixed liquor suspended solids. The TJC enhanced the degree of sludge reduction while consuming less energy, relative to conventional ozonation treatment systems, because of the synergic effects of hydrodynamic cavitation and ozonation. The hydrodynamic cavitation generated in the TJC increased the ozone mass transfer efficiency, which in turn promoted the rate of disintegration and solubilization of the sludge particles.  相似文献   
6.
Flexible electronics that enable the visualization of thermal energy have significant potential for various applications, such as thermal diagnosis, sensing and imaging, and displays. Thermo-adaptive flexible electronic devices based on thin 1D block copolymer (BCP) photonic crystal (PC) films with self-assembled periodic nanostructures are presented. By employing a thermo-responsive polymer/non-volatile hygroscopic ionic liquid (IL) blend on a BCP film, full visible structural colors (SCs) are developed because of the temperature-dependent expansion and contraction of one BCP domain via IL injection and release, respectively, as a function of temperature. Reversible SC control of the bi-layered BCP/IL polymer blend film from room temperature to 80 °C facilitates the development of various thermo-adaptive SC flexible electronic devices including pixel arrays of reflective-mode displays and capacitive sensing display. A flexible diagnostic thermal patch is demonstrated with the bi-layered BCP/IL polymer blend enabling the visualization of local heat sources from the human body to microelectronic circuits.  相似文献   
7.
Choi SJ  Ahn JH  Han JW  Seol ML  Moon DI  Kim S  Choi YK 《Nano letters》2011,11(2):854-859
Through the fusion of electrostatics and mechanical dynamics, we demonstrate a transformable silicon nanowire (SiNW) field effect transistor (FET) through a wafer-scale top-down approach. By felicitously taking advantage of the proposed electrostatic SiNW-FET with mechanically movable SiNWs, all essential logic gates, including address decoders, can be monolithically integrated into a single device. The unification of various functional devices, such as pn-diodes, FETs, logic gates, and address decoders, can therefore eliminate the complex fabrication issues associated with nanoscale integration. These results represent a step toward the creation of multifunctional and flexible nanoelectronics.  相似文献   
8.
The conceptual design of the purpose-built assembly tools required for ITER tokamak assembly is given. The ITER machine assembly is sub-divided into five major activities: lower cryostat, sector sub-assembly, sector assembly, ex-vessel, and in-vessel [1]. The core components, vacuum vessel (VV) and toroidal field coil (TFC), are assembled from nine 40° sub-assemblies, each comprising a 40° VV sector, two TFCs, and the associated VV thermal shield (VVTS). The lower cryostat activities must be completed prior to sector assembly in pit to prepare the foundations for the core components, and to locate the lower components to be trapped once the core components installation begins. In-vessel and ex-vessel activities follow completion of sector assembly. To perform these assembly activities requires both massive, purpose-built tools, and standard heavy handling and support tools. The tools have the capability of supporting and adjusting the largest of the ITER components; with maximum linear dimension 19 m and mass 1200 tonne, with a precision in the low mm range. Conceptual designs for these tools have been elaborated with the collaboration of the Korean Domestic Agency (KO DA). The structural analysis was performed as well using ANSYS code.  相似文献   
9.
KAERI (Korea Atomic Energy Research Institute) is developing an accelerator driven system (ADS) named HYPER (HYbrid Power Extraction Reactor) for a transmutation of long-lived nuclear wastes. One of the challenging tasks for the HYPER system is to design a large spallation target with a beam power of 15–25 MW. The paper focuses on a thermal–hydraulic analysis of the active part of the HYPER target. Computational fluid dynamics (CFD) analysis was performed by using a commercial code CFX 5.7.1. Several advanced turbulence models with different grid structures were applied. The CFX results reveal a significant impact of the turbulence model on the window temperature. Particularly, the kε model predicts the lowest window temperature among the five investigated turbulence models.  相似文献   
10.
In spite of efforts to fabricate stimuli‐sensitive structural colors (SCs) of self‐assembled block copolymer (BCP) photonic crystals (PCs) with potential applications in displays, media boards, and sensors, few studies have demonstrated BCP PCs suitable for high‐density nonvolatile information storage. Herein, a simple but robust route for multilevel nonvolatile information recording using a BCP PC is presented. The proposed method is based on the spatially controlled crosslinking of microdomains of a BCP PC induced by photothermal conversion. Photothermal SC writing is accomplished via time‐ and position‐controlled laser exposure on thin poly(styrene‐block‐quaternized 2‐vinyl pyridine) (PS‐b‐QP2VP) PC films deposited on a layer of poly(3,4‐ethylenedioxythiophene) doped with tosylate (PP‐PEDOT). Upon near‐infrared (NIR) irradiation of this structure, the PP‐PEDOT underlayer converts the NIR light into thermal energy in the locally irradiated region, which is subsequently transferred to the BCP top layer consisting of alternating in‐plane PS and QP2VP lamellar stacks. The QP2VP layers are vulnerable to thermal crosslinking, giving rise to locally programmable SCs. The degree of crosslinking of the QP2VP domains depends on the laser power and exposure time, which allows for multi‐SC recording per spot, leading to a novel multilevel optical recording medium based on BCP PCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号