首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   3篇
  国内免费   4篇
化学工业   8篇
金属工艺   2篇
建筑科学   22篇
能源动力   3篇
轻工业   1篇
水利工程   1篇
无线电   5篇
一般工业技术   16篇
冶金工业   9篇
原子能技术   2篇
自动化技术   9篇
  2021年   3篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   8篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   2篇
  2006年   7篇
  2005年   3篇
  2003年   2篇
  2000年   5篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC3D geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO2 Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO2 storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC3D for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.  相似文献   
2.
In this paper, we present a linked multicontinuum and crack tensor approach for modeling of coupled geomechanics, fluid flow, and solute transport in fractured rock. We used the crack tensor approach to calculate effective block-scale properties, including anisotropic permeability and elastic tensors, as well as multicontinuum properties relevant to fracture-matrix interactions and matrix diffusion. In the modeling, we considered stress dependent properties, through stress-induced changes in fracture apertures, to update permeability and elastic tensors. We evaluated the effectiveness and accuracy of our multicon-tinuum approach by comparing our modeling results with that of three independent discrete fracture network (DFN) models. In two of the three alternative DFN models, solute transport was simulated by particle tracking, an approach very different from the standard solute transport used in our multicon-tinuum modeling. We compared the results for flow and solute transport through a 20 m × 20 m model domain of fractured rock, including detailed comparison of total flow rate, its distribution, and solute breakthrough curves. In our modeling, we divided the 20 m × 20 m model domain into regular blocks, or continuum elements. We selected a model discretization of 40 × 40 elements (having a side length of 0.5 m) that resulted in a fluid-flow rate equivalent to that of the DFN models. Our simulation results were in reasonably good agreement with the alternative DFN models, for both advective dominated transport (under high hydraulic gradient) and matrix-diffusion retarded transport (under low hydraulic gradient). However, we found pronounced numerical dispersion when using larger grid blocks, a problem that could be remediated by the use of a finer numerical grid resolution, while maintaining a larger grid for evaluation of equivalent properties, i.e. a property grid overlapping the numerical grid. Finally, we encountered some difficulties in using our approach when element sizes were so small that only one or a few fractures intersect an element-this is an area of possible improvement that will be pursued in future research.  相似文献   
3.
Time series on fish mercury (Hg) development are rare for hydroelectric reservoirs in the tropics. In the central-western part of Brazil, a hydroelectric reservoir, called Lago Manso, was completed in 1999 after that background levels of fish Hg concentrations had been determined. The development for the first 3 years was studied in 2002. The objective of the present study was to determine development of fish Hg concentrations for a second three-year period after flooding. The bioaccumulation factor and certain abiotic and biotic factors, possibly affecting the availability and accumulation of Hg, were also examined. The results show that Hg levels in fish from Lago Manso have increased more than five times compared to the background levels observed before construction of the reservoir. At the same time, dissolved organic carbon has increased while dissolved oxygen has decreased indicating enhanced bioavailability of Hg. In the reservoir, Salminus brasiliensis had in average a Hg content of 1.1 microg g(-1) f.w., Pseudoplatystoma fasciatum 1.2, Serrasalmus marginatus/spilopleura 0.9, and Brycon hilarii 0.6 microg g(-1) f.w. The average fish Hg contents were higher downstream, except for B. hilarii. In the reservoir, the average Hg content of each species was in 2005 always over the consumption limit (0.55 microg total Hg g(-1) f.w.) recommended by WHO. Therefore, the people living around Lago Manso should be informed of the health effects of Hg, and fish consumption recommendations should be carried out. The accumulation of Hg varies widely between species as shown by the bioaccumulation factor which ranges between 5.08 and 5.59 log units. The observed variation is explained by differences in diet and trophic position with piscivorous fish exhibiting the highest mean Hg concentration, followed by carnivorous and omnivorous species. Carbon isotope analyses imply that trophic position is not the only cause of the observed differences in Hg levels between omnivorous B. hilarii, having a diet partly based on C(4) plants, and carnivorous S. marginatus as well as piscivorous S. brasiliensis, whose carbon sources are depleted in (13)C. The fact that the species have different carbon sources indicates that they belong to different food chains.  相似文献   
4.
This paper describes four case studies which formed a key part of an investigation into public investment project governance frameworks in Norway and the UK. The studies looked at how the embedded governance principles worked out in practice, how they affected PM, and how consistent their effects were with their aims. Conclusion is made about the actual effects of the frameworks, and various areas for improvement or further study are highlighted.  相似文献   
5.
ABSTRACT

Compared to conventional welding consumables using low transformation temperature (LTT) filler materials is an innovative method to mitigate tensile residual stresses due to delayed martensite transformation of the weld. For the effective usage of LTT filler materials, a deeper understanding of the complex processes that lead to the final residual stress state during multi-pass welding is necessary. Transformation kinetics and the strain evolution of multi-pass welds during welding were investigated in situ at the beamline HEMS@PETRAIII, Germany. Compared to conventional welds, the total strain was reduced and compression strain was achieved when using LTT filler materials. For an optimal use of the LTT effect in the root of multi-pass welds, the alloying concept must be adapted taking care of dilution.  相似文献   
6.
The chemical sputtering of deuterated amorphous carbon (a-C:D) surfaces irradiated by 1-50 eV deuterium atoms at surface temperatures between 300 and 1000 K was studied using classical molecular dynamics. A quasi-stationary state was reached by cumulative bombardment for each energy and temperature. Results were compared with available experimental data and previous modeling results and the applicability of molecular dynamics for thermally generated processes was discussed. An attempt is made to correct the absence of the thermally stimulated desorption/degassing of hydrogen from the MD simulations, which evolve at the longer time scales.  相似文献   
7.
Using a completely digital environment for the entire imaging process leads to new possibilities for optimisation of radiography since many restrictions of screen/film systems, such as the small dynamic range and the lack of possibilities for image processing, do not apply any longer. However, at the same time these new possibilities lead to a more complicated optimisation process, since more freedom is given to alter parameters. This paper focuses on describing an optimisation strategy that concentrates on taking advantage of the conceptual differences between digital systems and screen/film systems. The strategy can be summarised as: (a) always include the anatomical background during the optimisation, (b) perform all comparisons at a constant effective dose and (c) separate the image display stage from the image collection stage. A three-step process is proposed where the optimal setting of the technique parameters is determined at first, followed by an optimisation of the image processing. In the final step the optimal dose level-given the optimal settings of the image collection and image display stages-is determined.  相似文献   
8.
The aim of this study was to find the optimum tube voltage for neonatal chest imaging in computed radiography. The study was designed to take full advantage of the benefits of digital imaging, for example, by comparing the tube voltages at constant effective dose. A phantom study using a living rabbit was first conducted. Images were collected at tube voltages ranging from 40 to 90 kV(p). The reproduction of four structures (central vessels, peripheral vessels, carina and thoracic vertebrae) was rated by 10 radiologists. The reproduction of both central and peripheral vessels was relatively independent of tube voltage. The carina was better reproduced at higher tube voltages whereas the opposite was true for the thoracic vertebrae. Based on the higher importance of the reproduction of the carina it was decided that 90 kV(p) was the optimal tube voltage. To validate the result from the phantom study, a follow-up study was conducted in which images of neonates collected at the tube voltage regularly used at Sahlgrenska University Hospital (70 kV(p)) were compared with images collected at the tube voltage proposed by the phantom study. The follow-up study confirmed the results from the phantom study that the reproduction of the carina was better at 90 than at 70 kV(p). In conclusion, for neonatal chest imaging-given the same effective dose-90 kVp gives better reproduction of important structures than the regularly used 70 kV(p).  相似文献   
9.
It has been proposed that the mammalian facial skeleton is optimized for countering or dissipating masticatory stress. As optimized load-bearing structures by definition exhibit maximum strength with a minimum amount of material, this hypothesis predicts that during chewing and biting there should be relatively high and near uniform amounts of strain throughout the facial skeleton. If levels of strain in certain areas of the facial skeleton are relatively low during these behaviors, this indicates that the amount of bone mass in these areas could be significantly reduced without resulting in the danger of structural failure due to repeated masticatory loads. Furthermore, and by definition, this indicates that these areas are not optimized for countering masticatory stress, and instead their overall morphology and concentration of bone mass has most likely been selected or influenced mainly by factors unrelated to the dissipation or countering of chewing and biting forces. An analysis of in vivo bone strain along the lateral aspect of the zygomatic arch of macaques indicates the clear absence of a high and near uniform strain environment throughout its extent. Instead, there is a steep strain gradient along the zygomatic arch, with the highest strains along its anterior portion, intermediate strains along its middle portion, and the lowest strains along its posterior portion. These data, in combination with earlier published data (Hylander et al., 1991), indicate that levels of functional strains during chewing and biting are highly variable from one region of the face to the next, and therefore it is unlikely that all facial bones are especially designed so as to minimize bone tissue and maximize strength for countering masticatory loads. Thus, the functional significance of the morphology of certain facial bones need not necessarily bear any important or special relationship to routine and habitual cyclical mechanical loads associated with chewing or biting. Furthermore, the presence of these steep strain gradients within the facial skeleton suggests that the amount of bone mass in the low-strain areas may be largely determined by factors unrelated to processes frequently referred to as "functional adaptation," or conversely, that the "optimal strain environment" of bone varies enormously throughout the facial skeleton (cf., Rubin et al., 1994). Based solely on anatomical considerations, it is likely that the zygomatic arch is bent in both the parasagittal and transverse planes and twisted about its long axis. Due to constraints on rosette position, the strain data are incapable of determining if one or more of these loading conditions predominate. Instead, the strain data simply provide limited support for the possible presence of all of these loading regimes. Finally, as the masseter muscle is concentrated along the anterior portion of the zygomatic arch and as the arch has fixed ends, the largest shearing forces and the largest bending and twisting moments are located along its anterior portion. This in turn explains why the largest strains are found along the anterior portion of the zygomatic arch.  相似文献   
10.
We present a two-dimensional model of a bulk heterojunction solar cell in which we include the effects of optical interference, exciton diffusion, charge separation via the formation of polaron pairs, and charge transport in two separate interpenetrating phases. Our model shows that the current is increased by an order of magnitude with a full optical model compared to assuming that absorbed photons have a Lambertian profile, and depends much more strongly on applied bias when dissociation via polaron pairs is considered. We find a power efficiency at solar intensities of 1-3% depending on the morphology, and show that the fill factor decreases from 40% at low intensities to 20% at solar intensities because of the increase in the open circuit voltage and decreases much more rapidly at higher intensities due to the decrease in the power efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号