首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
能源动力   2篇
  2021年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Catalyst composites based on Pt and CeO2 on carbon for methanol oxidation were successively prepared for application in direct-methanol fuel cells (DMFCs). In this work, the catalyst was modified by decoration of CeO2 onto several carbons, including carbon black (CB), carbon nanotubes (CNT), graphene oxide (GO), reduced graphene oxide (rGO) and mixed carbons, followed by the electrochemical deposition of Pt. The dispersal of CeO2 and Pt nanoparticles onto the carbon surfaces was confirmed with a face-centred cubic structure. The use of single and mixed carbons takes admirable advantage of the coexisting CeO2 and Pt nanoparticles, confirming the positive effect of various carbon structures for electrocatalytic enhancement towards methanol oxidation. The CeO2 also improves the ability for CO oxidation, resulting in a reduction of CO poisoning. The outcomes show an enhancement of the activity and stability so that such alternative as-prepared materials can be introduced to improve the anodic oxidation in DMFCs.  相似文献   
2.
Electrocatalytic preparation of Pt-based nanocomposites has been investigated for improvement of direct ethanol fuel cells (DEFCs). In this study, new alternative catalysts of Pt-decorated cerium zirconium oxide-modified multiwalled carbon nanotubes (Pt/CeZrO4/MCNT) were successively prepared to improve the activity of the ethanol oxidation reaction (EOR). The prepared CeZrO4 with a face-centered cubic (fcc) structure compatibly dispersed onto MCNT provides abundant active Pt sites for highly active catalysts. The fcc-structured Pt was also satisfactorily decorated onto CeZrO4/MCNT, resulting in highly active Pt. The Ce4+/Ce3+ redox property can promote oxygen vacancies to improve the electrochemical activity for oxidation of carbonaceous species. An increase in roughness and a stabilized catalyst structure can also be produced by inserting Zr4+ into the ceria metal oxide. The prepared Pt/20%CeZrO4/MCNT catalysts present excellent electrochemical active surface area, mass activity, CO tolerance and high electron kinetic transfer with low resistance and high stability over commercial PtRu/C toward EOR. This promising catalyst material could be introduced to enhance the anodic oxidation reaction in DEFCs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号