首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3725篇
  免费   154篇
  国内免费   18篇
电工技术   48篇
综合类   5篇
化学工业   793篇
金属工艺   105篇
机械仪表   136篇
建筑科学   63篇
矿业工程   8篇
能源动力   175篇
轻工业   235篇
水利工程   24篇
石油天然气   17篇
无线电   421篇
一般工业技术   891篇
冶金工业   374篇
原子能技术   36篇
自动化技术   566篇
  2024年   8篇
  2023年   53篇
  2022年   112篇
  2021年   161篇
  2020年   134篇
  2019年   118篇
  2018年   173篇
  2017年   148篇
  2016年   150篇
  2015年   97篇
  2014年   151篇
  2013年   285篇
  2012年   152篇
  2011年   189篇
  2010年   167篇
  2009年   145篇
  2008年   166篇
  2007年   142篇
  2006年   93篇
  2005年   80篇
  2004年   75篇
  2003年   54篇
  2002年   73篇
  2001年   59篇
  2000年   51篇
  1999年   51篇
  1998年   95篇
  1997年   86篇
  1996年   55篇
  1995年   32篇
  1994年   49篇
  1993年   39篇
  1992年   32篇
  1991年   25篇
  1990年   30篇
  1989年   19篇
  1988年   18篇
  1987年   26篇
  1986年   26篇
  1985年   29篇
  1984年   28篇
  1983年   31篇
  1982年   14篇
  1981年   21篇
  1980年   25篇
  1979年   23篇
  1978年   19篇
  1977年   19篇
  1976年   19篇
  1974年   9篇
排序方式: 共有3897条查询结果,搜索用时 15 毫秒
1.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
2.
Wireless Personal Communications - The orthogonal frequency division multiplexing (OFDM) is the most encouraging multi-carrier modulation system chosen for the high data rates but the objective is...  相似文献   
3.
4.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
5.

Floods are common and recurring natural hazards which damages is the destruction for society. Several regions of the world with different climatic conditions face the challenge of floods in different magnitudes. Here we estimate flood susceptibility based on Analytical neural network (ANN), Deep learning neural network (DLNN) and Deep boost (DB) algorithm approach. We also attempt to estimate the future rainfall scenario, using the General circulation model (GCM) with its ensemble. The Representative concentration pathway (RCP) scenario is employed for estimating the future rainfall in more an authentic way. The validation of all models was done with considering different indices and the results show that the DB model is most optimal as compared to the other models. According to the DB model, the spatial coverage of very low, low, moderate, high and very high flood prone region is 68.20%, 9.48%, 5.64%, 7.34% and 9.33% respectively. The approach and results in this research would be beneficial to take the decision in managing this natural hazard in a more efficient way.

  相似文献   
6.
The current research work presents a facile and cost–effective co-precipitation method to prepare doped (Co & Fe) CuO and undoped CuO nanostructures without usage of any type of surfactant or capping agents. The structural analysis reveals monoclinic crystal structure of synthesized pure CuO and doped-CuO nanostructures. The effect of different morphologies on the performance of supercapacitors has been found in CV (cyclic voltammetry) and GCD (galvanic charge discharge) investigations. The specific capacitances have been obtained 156 (±5) Fg?1, 168(±5) Fg?1 and 186 (±5) Fg?1 for CuO, Co-doped CuO and Fe-doped CuO electrodes, respectively at scan rate of 5 mVs?1, while it is found to be 114 (±5) Fg?1, 136 (±5) Fg?1 and 170 (±5) Fg?1 for CuO, Co–CuO and Fe–CuO, respectively at 0.5 Ag-1 as calculated from the GCD. The super capacitive performance of the Fe–CuO nanorods is mainly attributed to the synergism that evolves between CuO and Fe metal ion. The Fe-doped CuO with its nanorods like morphology provides superior specific capacitance value and excellent cyclic stability among all studied nanostructured electrodes. Consequently, it motivates to the use of Fe-doped CuO nanostructures as electrode material in the next generation energy storage devices.  相似文献   
7.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   
8.
The Journal of Supercomputing - In the last decade, cloud computing has brought enormous changes to people’s lives. Cloud computing gives a client-driven computational model. In this case,...  相似文献   
9.
In India, little attention has been paid on antimicrobial resistance (AMR) in the context of developing “One Health” approach. Hence, utilizing multi-disciplinary approach, we assess the AMR level and dynamics/pattern of multi-drug resistance (MDR) in Escherichia coli, Salmonella spp., and Staphylococcus aureus circulating over the different stages of poultry in India. A total of 342 isolates including E. coli (n = 143), Salmonella spp. (n = 104), and S. aureus (n = 95) were recovered from fecal (n = 80) and cecal (n = 80) samples of chicken, collected across the different poultry-retail shops and poultry-farms located at urban and rural areas of Rajasthan, India, respectively. High rates of AMR to drugs that are critically/highly important both in human and veterinary medicine were observed among all the isolates. Upward trends in AMR prevalence was observed in poultry-retail shops than in poultry-farms. Notably, >90% of all the isolates were MDR, of particular, pattern/prevalence of MDR was substantially varied across the poultry-farms vs. poultry-retail shops. Our results indicate AMR including MDR to be common in E. coli, Salmonella spp., and S. aureus distributed frequently in poultry. The study encourages the formulation of national policy, programmes and further research with a “One Health” approach that can benefits to the human/animal and the environment.  相似文献   
10.
Technical Physics Letters - Using the method of DC magnetron sputtering, nonstructured amorphous metal coatings of Zr75Pd25 composition were obtained with an average deposition rate of 1.3 nm/s at...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号