首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   1篇
能源动力   3篇
石油天然气   1篇
  2018年   3篇
  2014年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
2.
For application in a microbial fuel cell (MFC), transition metal and nitrogen co-doped nanocarbon catalysts were synthesised by pyrolysis of multi-walled carbon nanotubes (MWCNTs) in the presence of iron- or cobalt chloride and nitrogen source. For the physicochemical characterisation of the catalysts, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) was used. The results obtained by rotating disk electrode (RDE) method showed an extraordinary electrocatalytic activity of these catalysts towards oxygen reduction reaction (ORR) in neutral media, which was also confirmed by the MFC results. The Co-N-CNT and Fe-N-CNT cathode catalysts exhibited maximum power density of 5.1 W m?3 and 6 W m?3, respectively. Higher ORR activity and improved electric output in the MFC could be attributed to the formation of the active nitrogen-metal centers. All findings suggest that these materials can be used as potential cathode catalysts for ORR in MFC to replace expensive noble-metal based materials.  相似文献   
3.
Acid-treated multi-walled carbon nanotubes (MWCNTs) were decorated with TiO2 using the atomic layer deposition (ALD) technique followed by uniform distribution of platinum nanoparticles (PtNPs) through magnetron sputtering. Surface analyses were performed by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical decontamination and characterization of the Pt-TiO2/MWCNT electrodes were carried out by CO stripping followed by cyclic voltammetry in acid media. The oxygen reduction reaction (ORR) was studied in O2-saturated 0.05 M H2SO4 solution using the rotating disk electrode (RDE) method. Durability of the prepared catalysts was examined by repetitive potential cycling. Electrochemical data obtained was analyzed and compared to that of the commercial Pt/C catalyst. It was revealed that the Pt-TiO2/MWCNT catalysts possess higher ORR activity and better durability as compared to that of the commercial Pt/C.  相似文献   
4.
Peat will be used more widely for heating in Tartu (Estonia), therefore the potential health effects needed to be assessed. In transition from today's gas heating to burning of peat, the amount of exhaust gases emitted will increase and more than 100 000 people will be exposed to greater health risks. Based on the peat quality data, the emissions were calculated and their dispersion in Tartu was modelled using the air pollution dispersion and deposition model AEROPOL. The AirQ software, developed by the WHO, was used for calculating the health impacts. The number of years of life lost (YLL) due to the emissions from peat burning was estimated to be up to 55.5 in a year within the population of Tartu (101 000 citizens). However, in perspective, this would be about 28 times less than YLL calculated due to emissions from traffic, local heating etc.  相似文献   
5.
The corrosion inhibition of metallic substrates is a prime issue for many potential applications where corrosion plays a crucial role. The development of carbon based on functionalized coatings could increase the lifetime of metallic substrates by inhibiting the corrosion process. Present work is an effort to develop a corrosion inhibiting composite coating of graphene oxide and polypyrrole for AISI (American Iron and Steel Institute) type 304 stainless steel substrates. The electrochemical galvanostatic deposition process was applied for coating development. The coating morphology and ability to cover the substrate surface was analyzed with a high-resolution scanning electron microscope. The coating's structural and electronic properties were analyzed with Raman spectroscopy. The investigation of corrosion inhibition involved open circuit potential, Tafel, and voltammetry analysis. The standard salt test ASTM (American Society for Testing and Materials) G48A for stainless steel substrate has also been studied. Significant enhancement of corrosion potential as well as pitting potential for the composite coated substrates has been noted. Furthermore, corrosion and breakdown potential increased upon changing the material from graphene oxide to its composite coating. During the salt test analysis, the durability of the composite coating was noted up to 72 h, which is the standard time scale. Based on experimental analysis, this composite material can be used as an effective carbon based on functionalized corrosion inhibitor for stainless steel substrates to increase their lifetime.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号