首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
能源动力   1篇
  2003年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Assumptions that no metastable flow phenomenon and flow in two-phase region is homogeneous have been used exclusively to study the flow characteristics in capillary tubes used as an expansion and controlling device in refrigerating systems. However, some experimental results show that due to the delay of vapourization, the onset of vapourization may not take place at the end of the sub-cooled liquid region. The two-phase flow in small diameter tubes may be also not entirely homogeneous due to phase interaction. In this paper, a mathematical model based on conservations of mass, energy and momentum is presented to simulate the refrigerant flow in adiabatic capillary tubes. Different from most previous studies, the metastable flow region is accounted in the model and the annular flow is also assumed to take place in the two-phase region. The model is validated by comparing with the experimental data reported in literature. The agreement between experimental and simulation results indicates that the model with appropriate correlations of pressure at vapourization and slip ratio can be used to predict the two-phase flow behaviour of refrigerant in capillary tubes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号