首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   12篇
  国内免费   3篇
电工技术   1篇
化学工业   26篇
金属工艺   4篇
机械仪表   8篇
建筑科学   19篇
能源动力   9篇
轻工业   9篇
无线电   4篇
一般工业技术   16篇
冶金工业   6篇
自动化技术   5篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   10篇
  2016年   8篇
  2015年   9篇
  2014年   5篇
  2013年   9篇
  2012年   11篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1976年   1篇
排序方式: 共有107条查询结果,搜索用时 46 毫秒
1.
In this article a new technique for the dynamic response of structures is investigated. This applied procedure can predict the approximate seismic performance of the structures and it is fast, inexpensive and results are reasonably acceptable. In fact, this novel method logically combines two different techniques, ‘incremental dynamic analysis (IDA)’ and ‘modal pushover analysis (MPA)’, presented by other researchers. This method will take advantage of both methodical ideas such as equivalent single degree of freedom of multi‐degree structures and the implementation of different scaled level of an earthquake record to the provided equivalent SDF structure. Using this procedure, simple approximate curves that present a realistic linear and non‐linear seismic behaviour of the structure due to the applied scaled level of earthquakes can easily be extracted. In this investigation, several four‐, eight‐ and 12‐storey structures are specified as the example models and are dynamically analysed. Next, three different scaled earthquakes, El Centro, Northridge and San Fernando, are applied to each example problem. The results of the presented technique, modal incremental dynamic analysis (MIDA), are then compared with the IDA method. Comparison of the results reveals good accuracy in building seismic demands evaluation. Finally, it is also shown that the MIDA method is simple enough to be carried out on most personal computers and the authors believe this technique will serve design engineers working in real design conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
2.
In this paper the effects of a magnetic field on mixed convection flow in a two‐sided lid‐driven cavity have been analyzed by the lattice Boltzmann method (LBM). The Hartmann number varied from Ha = 0 to 100. The study has been conducted for different Richardson numbers (Ri) from 0.01 to 100 while the direction of the magnetic field was investigated in the x‐direction. Consequences demonstrate that the heat transfer augments with an increment of the Richardson number for different Hartmann numbers for two cases. The heat transfer declines with the growth of the magnetic field for various Richardson numbers for two cases. The difference between the values of heat transfer for the two cases at variant parameters is negligible but the trend of fluid flow for the two cases is multifarious. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20402  相似文献   
3.
This paper investigates numerically the problem of unsteady magnetohydrodynamic nanofluid flow and heat transfer between parallel plates due to the normal motion of the porous upper plate. The governing equations are solved via the fourth-order Runge-Kutta method. Different kind of nanoparticles is examined. The effects of kind of nanoparticle, nanofluid volume fraction, expansion ratio, Hartmann number, Reynolds number on velocity and temperature profiles are considered. Also effect of different types of nanoparticles is examined. Results indicate that velocity decreases with increase of Hartmann number due to effect of Lorentz forces. Rate of heat transfer increase with increase of nanofluid volume fraction, Hartmann number and Reynolds number but it decreases with increase of expansion ratio. Also it can be found that choosing copper as a nanoparticle leads to highest enhancement.  相似文献   
4.
5.
The selective separation of carbon dioxide (CO2) from a wet gaseous mixture of CO2/H2 through facilitated transport membranes containing immobilized aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), ethylenediamine (EDA) and monoprotonated ethylenediamine (EDAH+) and their blends was experimentally investigated. The effect of CO2 partial pressure, amine concentration, feed side pressure and amine species on the CO2 and H2 permeances were studied. The CO2 permeability through amine solution membranes decreased with increasing CO2 feed partial pressure but the H2 permeance was almost independent of the H2 partial pressure. A comparison of experimental results showed that single or blended amines with low viscosity and a moderate equilibrium constant, i.e., large forward and reverse reaction rate of CO2‐amine, are suitable for effective separation of CO2. The permeability of CO2 generally increased with an increase in amine concentration, although this increase may be compromised by the salting out effect and decrease in diffusivities of species. The results obtained indicated that CO2 permeance across a variety of amines are in the order of DEA (2 M) > MD (2 M) > MD (1 M) > MEA (2 M) > MEA (4 M) > MD (4 M) > DEA (1 M) > DEA (4 M) > MEA (1 M) for various concentrations of MEA + DEA blend and are in the order of EDAH+ (2 M) > DEA (2 M) > MH (2 M) > DH (2 M) > ED (2 M) > EDA (2 M) > MEA (2 M) for various blends of amine.  相似文献   
6.
The main purpose of the present work is to study the thermal stress imposed by selective permeation hydrogel‐filled nonwoven membranes (SPHM) in various environmental conditions, including cold, moderate and hot, in view of high and low wearer activity levels. In addition, graphene oxide (GO) has been used in the matrix structure of SPHM to reduce thermal stress. Hence, a mathematical model is proposed to study one‐dimensional heat transfer through SPHM reinforced with GO. Heat transfer equation was solved using the differential quadrature method and the resulting model was verified by experiments using a dynamic heat transfer simulation apparatus. It was observed that SPHM causes a significant thermal stress, especially in hot environments, and high activity level due to the low thermal conductivity of hydrogels. The results also showed that an increase in the GO content from 0.1% up to 0.5% leads to an increase in thermal conductivity up to 85% of blank SPHM without GO. Therefore, SPHM reinforced with GO is a promising candidate for protective clothing, especially in hot environments. Also, the mathematical model can be useful in predicting thermal stress for designing SPHM‐based PCs in various environmental conditions and activity levels. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44752.  相似文献   
7.
The Crispening effect is defined as an increase in the perceived color difference of the two stimuli, when their color (chromaticity or luminance) is close to the background on which the two stimuli are compared. In this study, the amount of the Crispening effect for three achromatic backgrounds and also the performance of six different color difference formulas (CDFs) for prediction of this effect have been investigated, by preparing 85 sample pairs in 9 CIE's recommended color centers. Regarding the results, the maximum (50%) and the minimum (4%) amount of the Crispening effect belong to the gray and the purple centers, respectively. According to the results of a comparative test, the Crispening intensifies when two stimuli have just lightness difference instead of just chromaticity difference. The highest variation was for the gray samples, in which the amount of the Crispening effect increased from 35% to 65%. By using PF/3 and STRESS index, it is also concluded that CMC and CIEDE2000 perform better than CAM02‐SCD and CAM02‐UCS in prediction of the Crispening effect on the dark gray and gray backgrounds. According to the results, the significant differences between the performances of the CDFs disappear when the luminance of the background increases. Huang's power functions also do not improve these results significantly. Furthermore, the results indicate that the traditional L* equation used in CIELAB performs similar to the Whittle's formula in prediction of the Crispening effect for reflective samples, and no significant difference was obtained.  相似文献   
8.
A simple model for the photocurrent density of a linearly graded band gap Cu(In,Ga)Se2 solar cell is presented. Both generation and recombination mechanisms in the space charge region and absorber region of the cell are considered. The carrier collection function and effective absorption coefficient are introduced in the calculations to obtain a more realistic model. The results show that photocurrent density of the graded band-gap solar cell is higher than that with a constant averaged band gap. There is an optimum for grading strength or band gap widening of the absorber region. Recombination current reduces the photocurrent density with a lower reduction in the absorber material than in the depletion region. For longer diffusion lengths (or greater values of carrier collection factor), a higher photocurrent density is obtained except where collection probability is already unity everywhere in the absorber.  相似文献   
9.
At present, corrugated plates have numerous applications such as web of plate girders and aerospace applications. Higher out‐of‐plane stiffness and initial elastic strength of the corrugated plates compared with flat plates are reasons for consideration. This study investigates the behavior of trapezoidally corrugated steel plate shear walls (TCSPSWs) under monotonic and cyclic loadings. Finite element analyses that include both material and geometric nonlinearities are employed for the examination. The results from finite element analysis are verified through tested specimen findings. Moreover, the behavior of the steel shear walls with the flat infill panels and the corrugated plate infill panels is compared. The results show that explicit dynamic analysis is the most suitable analysis for the TCSPSWs under quasi‐static loading. Furthermore, although strength of the TCSPSWs obtained from the finite element analysis and the test are fully coincident in elastic region, nonetheless, they are fairly coincident in elastic–plastic and plastic region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
This article extends a procedure that has been used to discretize the static physical system following the assumption that a continuous flexible beam can be replaced by a system of rigid bars and joints which resists relative rotation of the attached bars. We call this procedure the “discrete element response of beams”. The object of this article is to present and formulate a new simple, practical and inexpensive approximate technique for determining the time response of beams, with different boundary conditions, carrying a moving mass. To verify the results, other solutions are obtained by continuous simulation systems, CSMP, and dynamic finite element, PAFEC. This algorithm is shown to be much more efficient computationally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号