首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   13篇
  国内免费   5篇
化学工业   40篇
金属工艺   2篇
矿业工程   2篇
能源动力   5篇
轻工业   17篇
石油天然气   1篇
无线电   25篇
一般工业技术   39篇
冶金工业   8篇
原子能技术   1篇
自动化技术   18篇
  2023年   2篇
  2022年   12篇
  2021年   16篇
  2020年   5篇
  2019年   9篇
  2018年   16篇
  2017年   7篇
  2016年   9篇
  2015年   5篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   14篇
  2010年   9篇
  2009年   3篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1976年   1篇
  1968年   1篇
排序方式: 共有158条查询结果,搜索用时 31 毫秒
1.
Microsystem Technologies - A physics-based Quantum-Modified CLassical Drift–Diffusion (QMCLDD) non-linear mathematical model has been developed for design and characterisation of GaN/AlGaN...  相似文献   
2.
Microsystem Technologies - Photo-sensors are integral part of different bio-medical diagnostic equipment. Each type of bio-molecules possess unique spectral fingerprint in visible wavelength region...  相似文献   
3.
Bone exhibits piezoelectric properties. Thus, electrical stimulations such as pulsed electromagnetic fields (PEMFs) and stimuli-responsive piezoelectric properties of scaffolds have been investigated separately to evaluate their efficacy in supporting osteogenesis. However, current understanding of cells responding under the combined influence of PEMF and piezoelectric properties in scaffolds is still lacking. Therefore, in this study, we fabricated piezoelectric scaffolds by functionalization of polycaprolactone-tricalcium phosphate (PCL-TCP) films with a polyvinylidene fluoride (PVDF) coating that is self-polarized by a modified breath-figure technique. The osteoinductive properties of these PVDF-coated PCL-TCP films on MC3T3-E1 cells were studied under the stimulation of PEMF. Piezoelectric and ferroelectric characterization demonstrated that scaffolds with piezoelectric coefficient d33 = −1.2 pC/N were obtained at a powder dissolution temperature of 100 °C and coating relative humidity (RH) of 56%. DNA quantification showed that cell proliferation was significantly enhanced by PEMF as low as 0.6 mT and 50 Hz. Hydroxyapatite staining showed that cell mineralization was significantly enhanced by incorporation of PVDF coating. Gene expression study showed that the combination of PEMF and PVDF coating promoted late osteogenic gene expression marker most significantly. Collectively, our results suggest that the synergistic effects of PEMF and piezoelectric scaffolds on osteogenesis provide a promising alternative strategy for electrically augmented osteoinduction. The piezoelectric response of PVDF by PEMF, which could provide mechanical strain, is particularly interesting as it could deliver local mechanical stimulation to osteogenic cells using PEMF.  相似文献   
4.
Microsystem Technologies - Absorptive and dispersive properties of atmospheric hydrometeors, affect the propagation of millimetre-wave and submillimeter wave signals. In adverse weather condition,...  相似文献   
5.
The search for food stimulated by hunger is a common phenomenon in the animal world. Mimicking the concept, recently, an optimization algorithm Hunger Games Search (HGS) has been proposed for global optimization. On the other side, the Whale Optimization Algorithm (WOA) is a commonly utilized nature-inspired algorithm portrayed by a straightforward construction with easy parameters imitating the hunting behavior of humpback whales. However, due to minimum exploration of the search space, WOA has a high chance of trapping into local solutions, and more exploitation leads it towards premature convergence. The concept of hunger from HGS is merged with the food searching techniques of the whale to lessen the inherent drawbacks of WOA. Two weights of HGS are adaptively designed for every whale using the respective hunger level for balancing search strategies. Performance verification of the proposed hunger search-based whale optimization algorithm (HSWOA) is done by comparing it with 10 state-of-the-art algorithms, including three very recently developed algorithms on 30 classical benchmark functions. Comparison with some basic algorithms, recently modified algorithms, and WOA variants is performed using IEEE CEC 2019 function set. Statistical performance of the proposed algorithm is verified with Friedman's test, boxplot analysis, and Nemenyi multiple comparison test. The operating speed of the algorithm is determined and tested with complexity analysis and convergence analysis. Finally, seven real-world engineering problems are solved and compared with a list of metaheuristic algorithms. Numerical and statistical performance comparison with state-of-the-art algorithms confirms the efficacy of the newly designed algorithm.  相似文献   
6.
Nanocomposites of polyfuran (PF) and polythiophene (PTP) with montmorillonite clay (MMT) were prepared and modified by loading of polyaniline (PANI) and polypyrrole (PPY) moieties via polymerization of aniline (ANI) and pyrrole (PY) in aqueous dispersions of PF-MMT and PTP-MMT nanocomposites. Formation of PANI and PPY and their subsequent incorporation in the PF-MMT and PTP-MMT composites was confirmed by FTIR absorption studies. X-ray diffraction (XRD) patterns of PANI and PPY modified PF-MMT and PTP-MMT composites showed that PF-MMT and PTP-MMT intercalates were still present in the modified composites. Scanning electron microscopic analysis revealed distinctive morphological patterns of the various composite particles. The dc conductivity values of PANI and PPY modified PF-MMT and PTP-MMT composites were in the order of 10−2 S/cm in either system – a value much improved compared to the same for both of the unmodified PF-MMT (10−7 S/cm) and PTP-MMT (10−5 S/cm) nanocomposites respectively.  相似文献   
7.
A full-scale, self-consistent, non-linear, large-signal model of double-drift hetero-structure IMPATT diode with general doping profile is derived. This newly developed model, for the first time, has been used to analyze the large-signal characteristics of hexagonal SiC-based double-drift IMPATT diode. Considering the fabrication feasibility, the authors have studied the large-signal characteristics of Si/SiC-based hetero-structure devices. Under small-voltage modulation (~ 2%, i.e. small-signal conditions) results are in good agreement with calculations done using a linearised small-signal model. The large-signal values of the diode's negative conductance (5 × 106S/m2), susceptance (10.4 × 107 S/m2}), average breakdown voltage (207.6 V), and power generating efficiency (15%, RF power: 25.0 W at 94 GHz) are obtained as a function of oscillation amplitude (50% of DC breakdown voltage) for a fixed average current density. The large-signal calculations exhibit power and efficiency saturation for large-signal (> 50%) voltage modulation and thereafter decrease gradually with further increasing voltage-modulation. This generalized large-signal formulation is applicable for all types of IMPATT structures with distributed and narrow avalanche zones. The simulator is made more realistic by incorporating the space-charge effects, realistic field and temperature dependent material parameters in Si and SiC. The electric field snap-shots and the large-signal impedance and admittance of the diode with current excitation are expressed in closed loop form. This study will act as a guide for researchers to fabricate a high-power Si/SiC-based IMPATT for possible application in high-power MM-wave communication systems.  相似文献   
8.
BACKGROUND: A major bottleneck in microalgal biodiesel production is lipid content, which is often low in microalgal species. The present study examines Chlorella vulgaris as a potential feedstock for biodiesel by identifying and evaluating the relationships between the critical variables that enhance the lipid yield, and characterizes the biodiesel produced for various properties. RESULTS: Factors affecting lipid accumulation in a green microalga, Chlorella vulgaris were examined. Multifactor optimization raised the lipid pool to 55% dry cell weight against 9% control. When C. vulgaris cells pre‐grown in glucose (0.7%)‐supplemented medium were transferred to the optimized condition at the second stage, the lipid yield was boosted to 1974 mg L?1, a value almost 20‐fold higher than for the control. The transesterified C. vulgaris oil showed the presence of ~82% saturated fatty acids, with palmitate and stearate as major components, thus highlighting the oxidative stability of C. vulgaris biodiesel. The fuel properties (density, viscosity, acid value, iodine value, calorific value, cetane index, ash and water contents) are comparable with the international (ASTM and EN) and Indian (IS) biodiesel standards. CONCLUSION: C. vulgaris biomass with 55% lipid content and adequate fuel properties is potentially a renewable feedstock for biodiesel. Copyright © 2011 Society of Chemical Industry  相似文献   
9.
Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.  相似文献   
10.
We report a copper hexadecafluorophthalocyanine (F16CuPc) based n-type organic field-effect transistor (OFET) with polymeric gate dielectrics with different physical/electrical properties. The gate dielectrics are four types of cross-linked poly(4-vinylphenol) and newly prepared poly(4-phenoxy methyl styrene) and those are characterized based on surface tension, leakage current and capacitance. The performance of F16CuPc OFETs with those gate dielectrics was compared. We found that the composition of the gate dielectrics and the interfacial interaction of F16CuPc with the gate dielectric play a decisive role in the performance of OFETs. The effect of physical/electrical properties, composition and processing condition of the gate dielectrics on the device performance was investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号