首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
能源动力   1篇
  2023年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Solidification of a liquid in motion driven by shear and pressure gradients occurs in many natural settings and technological applications. When the liquid is electrically conducting, its solidification rates can potentially be modulated by an imposed magnetic field. The shearing motion results in viscous dissipation and the Lorentz force induced by the magnetic field causes Joule heating of the fluid, which can influence the structure of the flow, thermal fields, and thereby the solidification process. In this study, a mathematical model is developed to study the combined effects of shear and pressure gradients in the presence of a magnetic field on the solidification of a liquid between two parallel plates, with one of them being insulated and under constant motion, and the other being cooled convectively and at rest. Under the quasi-steady assumption, closed-form semianalytical solutions are obtained for the instantaneous location of the solid–liquid interface, Nusselt number, and dimensionless power density as a function of various characteristic parameters such as the Hartmann number, pressure gradient parameter, Brinkman number, and Biot number. Furthermore, an interesting remelt or steady-state condition for the interfacial location is derived as arising from the competing effects of the solid side heat flux and viscous dissipation and Joule heating on the liquid side. The newly derived analytical results are shown to reduce to the various classical results in the limiting cases. A detailed systematic study is performed by the numerical solution of the semianalytical formulation, and the effects of different characteristic parameters on the solidification process are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号