首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   4篇
化学工业   23篇
建筑科学   1篇
能源动力   1篇
轻工业   10篇
无线电   3篇
一般工业技术   4篇
自动化技术   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2003年   3篇
  2001年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
In this study, recycled polyethylene (rPE) based microfibrillated composites (MFCs) were developed while incorporating recycled poly(ethylene terephthalate) (rPET) and recycled polyamide 6 (rPA) as the reinforcing fibrillar phases at a given weight ratio of 80 wt% (rPE)/20 wt% (rPET or rPA). The blends were first melt processed using a twin-screw extruder. The extrudates were then cold stretched at a drawing ratio of 2.5 to form rPET and rPA fibrillar structures. Next, the pelletized drawn samples were injection molded at the barrel temperatures below the melting temperatures of rPET and rPA. The tensile, three-point bending, impact strength, dynamic thermomechanical, and rheological properties of the fabricated MFCs were analyzed. The effects of injection molding barrel temperature (i.e., 150°C and 190°C) and extrusion melt processing temperature (i.e., 250°C and 275°C) on the generated fibrillar structure and the resultant properties were explored. A strong correlation between the fibrillar morphology and the mechanical properties with the extrusion and injection molding temperatures was observed. Moreover, the ethylene/n-butyl acrylate/glycidyl methacrylate (EnBAGMA) terpolymer and maleic anhydride grafted PE (MAH-g-PE) were, respectively, melt processed with rPE/rPET and rPE/rPA6 blends as compatibilizers. The compatibilizers refined the fibrillar structure and remarkably influenced mechanical properties, specifically the impact strength.  相似文献   
2.
3.
In this study, Acrylic acid (AA)/2‐acrylamido‐2‐methlypropane sulfonic acid (AMPS) hydrogels were prepared by free radical polymerization in aqueous solutions of AA, AMPS, and N,N‐methylenebisacrylamide (NMBA) as crosslinker. Potassium persulfate (PPS)/potassium bisulfide (PBS) were used as initiator and accelerator pair. The water absorption capacities and dye adsorption properties of the hydrogels were investigated. Adsorption properties of the hydrogels were evaluated by depending on different adsorption conditions such as different initial dye concentration and contact time. The concentrations of the dyes were determined using UV/Vis Spectrophotometer at wavelength 530 nm for safranine T (ST) and 622 nm for brilliant cresyl blue (BCB). Adsorption kinetic studies showed that pseudo‐first order kinetic model is suitable to explain the adsorption kinetic data of the hydrogels. Langmuir and Freundlich isotherm models were used to describe adsorption data. The result revealed that the adsorption of basic dyes onto hydrogels fit very well both Langmuir and Freundlich isotherms. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
4.
The swelling behavior of balanced acrylamide (AAm)‐based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. Equimolar ratio of the ionic comonomers 4‐vinylpyridine (cationic monomer) and acrylic acid (anionic monomer) were used together with the nonionic monomer AAm in the hydrogel preparation. The variations of the hydrogel volume in response to changes in pH were measured. It was found that the hydrogels are in a collapsed state not only at the pH of the isoelectric point pHIEP but also over a wide range of pH including pHIEP. The width of the collapsed plateau increased and the hydrogels assumed a more compact state as the ionic group content is increased. The antipolyelectrolyte behavior was observed along the collapsed plateau region, where the gel occupies a larger volume in salt solution. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
5.
The thermal oxidative degradation kinetics of poly(ethylene terephthalate) (PET) copolymers modified with poly(lactic acid) (PLA) were investigated with thermogravimetric analyzer (TGA). The thermal properties of the modified products were also determined by differential scanning calorimeter (DSC) technique. Waste PET (P100) obtained from postconsumer water bottles was modified with a low‐molecular‐weight PLA. The PET/PLA weight ratio was 90/10 (P90) and 50/50 (P50) in the modified samples. The thermal oxidative degradation kinetics of the modified samples was compared with those of PET (P100). The segmented block and/or random copolymer structure of the modified samples formed by a transesterification reaction between the PLA and PET units in solution and the length of the aliphatic and aromatic blocks were found to have a great effect on the degradation behavior. On the basis of the results of the degradation kinetics determined by Kissinger method, the degradation rate of the samples decreased in the order of P50 > P90 > P100, depending on the amount of PLA in the copolymer structure. However, the degradation activation energies (EA) of the samples decreased in the order of P100 > P90 > P50. It was concluded that the degradation rate and mechanism were affected significantly by the incorporation of PLA into the copolymer structure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
6.
Abstract: The effect of Lactobacillus plantarum (FI8595), Lactococcus lactis subsp. cremoris MG 1363), Lactococcus lactis subsp. lactis (IL 1403), and Streptococcus thermophilus on cadaverine and other biogenic amine production by foodborne pathogens was investigated lysine decarboxylase broth. Both of lactic acid bacteria and foodborne pathogens used (especially Staphylococcus aureus, E. coli, Lc. lactis subsp. lactis and Lb. plantarum) had an ability to convert aminoacids into biogenic amine. The conversion of lysine into cadaverine was the highest (167.11 mg/L) by Lactobacillus spp. Gram‐positive bacteria generally had a greater ability to produce cadaverine with corresponding value of 46.26, 53.76, and 154.54 mg/L for Enterococcus faecalis, S. aureus, and Listeria monocytogenes, respectively. Significant variations on biogenic amine production were observed in the presence of lactic acid bacteria strains (P < 0.05). The role of lactic acid bacteria on biogenic amine production by foodborne pathogens varied depending on strains and specific amine. Cadaverine accumulation by Enterobactericeae was increased in the presence of lactic acid bacteria strains except for St. thermophilus, which induced 2‐fold lower cadaverine production by S. Paratyphi A. Lc. lactis subsp. lactis and Lc. lactis subsp. cremoris induced 10‐fold higher increases in histamine for E. coli and K. pneumoniae, respectively. Lactic acid bacteria resulted in strong increases in cadaverine production by P. aeruginosa, although remarkable decreases were observed for histamine, spermidine, dopamine, agmatine, and TMA in the presence of lactic acid bacteria in lysine decarboxylase broth . The result of the study showed that amine positive lactic acid bacteria strains in fermented food led to significant amine accumulation by contaminant bacteria and their accumulation in food product may be controlled by the use of proper starters with amine‐negative activity. Practical Application: Foodborne pathogens and certain lactic acid bacteria are particularly active in the production of biogenic amines. Most of the strains of bacteria possess more than 1 amino acid decarboxylase activity under lysine enrichment culture conditions. Lactic acid bacteria strains had a significant role on increase putrescine accumulation by foodborne pathogens. The increased production of biogenic amines in mixed culture is the result of presence of amine positive lactic acid bacteria strains. The addition of a proper selected starter culture with amine‐negative activity is advisable to produce safer fermented food with low contents of biogenic amines.  相似文献   
7.
Single‐walled carbon nanotube (SWCNT) polyvinylimidazole (PVI) composites have been prepared by in situ emulsion polymerization. Dispersion of raw SWCNTs in the PVI matrix was improved by surface modification of the SWCNTs using nitric acid treatment and air oxidation. The carbonyl‐terminated SWCNTs were covalently bonded to PVI by in situ polymerization and the SWCNT/PVI composite was thus obtained. The morphological and structural characterizations of the surface‐functionalized SWCNTs and SWCNT/PVI composites were carried out by Fourier transform infrared spectroscopy, X‐ray diffraction, conductivity measurements, scanning, and transmission electron microscopy. Thermograms of the materials were determined by the differential scanning calorimetry technique. The characterization results indicate that PVI was covalently bonded to SWCNTs and a new material was then obtained. The functionalized SWCNTs showed homogenous dispersion in the composites, whereas purified SWCNT resulted in poor dispersion and nanotube agglomeration. SWCNT/PVI composites exhibited chemical stability enhancement in many common solvents. I–V curves of the samples exhibit an ohmic character. Conductivity values for pure SWCNTs, pure PVI and SWCNT/PVI composite were measured to be 3.47, 2.11 × 10−9, and 2.3 × 10−3 S/m, respectively. Because of resonance, a large dielectric constant is obtained for SWCNT/PVI composite, which is not observed for ordinary materials. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   
8.
Waterborne acrylic emulsion was obtained by using methyl methacrylate, ethyl and butyl acrylate monomers. Emulsions containing nanoparticles were prepared by blending the stable dispersions containing SiO2 or MMT nanoparticles. The films were prepared from emulsions and coating tests were applied. The physical properties of prepared emulsions are better than the commercial emulsions. The addition of the nanoparticles especially SiO2 have positive effect on the resistance to environmental conditions of emulsions. Waterborne acrylic emulsions containing nanoparticles prepared in this study can be used in the manufacturing of the semi-lustrous emulsion type nano paint with low cost, high performance and environmentally friendly.  相似文献   
9.
10.
Modified crosslinked polyacrylamides having different functional groups were prepared by Mannich reaction using different amine compounds such as ethylenediamine (EDA), diethylenetriamine (DETA) and triethylenetetramine (TETA) and sulfomethylation reaction. Products were characterized by determination of their basic group content (BGC), hydroxymethyl group content (HMG), equilibrium degree of swelling (EDS) and FT-IR spectra. For Mannich reactions, BGC and EDS changed with amount of employed amine compounds, reaction time and temperature. Sulfomethylation reactions gave products with high BGC and very high EDS. FT-IR spectroscopic analysis confirmed that a parallel hydrolysis reaction occurred along with the expected modification reactions. The products were used for removal of Cu(II), Cd(II) and Pb(II) ion under competitive and non-competitive conditions at different pH. The metal ion removal capacities changed depending their BGC and EDS. While the Mannich products were selective towards Cu(II) ion, the sulfomethylation products were highly selective to Pb(II) ions. The polymers were used several times by regeneration without loss of adsorption capacity and changing of selectivity properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号