首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   27篇
  国内免费   2篇
电工技术   7篇
综合类   1篇
化学工业   103篇
金属工艺   7篇
机械仪表   8篇
建筑科学   6篇
矿业工程   2篇
能源动力   46篇
轻工业   26篇
水利工程   2篇
石油天然气   4篇
无线电   13篇
一般工业技术   54篇
冶金工业   11篇
原子能技术   4篇
自动化技术   34篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   13篇
  2020年   11篇
  2019年   15篇
  2018年   19篇
  2017年   30篇
  2016年   26篇
  2015年   12篇
  2014年   16篇
  2013年   44篇
  2012年   33篇
  2011年   37篇
  2010年   14篇
  2009年   11篇
  2008年   12篇
  2007年   7篇
  2006年   5篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1998年   4篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
排序方式: 共有328条查询结果,搜索用时 31 毫秒
1.
For the first time in this study, Zinc oxide nanoparticles were biosynthesized by the eco-friendly and cost-effective procedure using Amygdalus scoparia stem bark extract then used as antibacterial, antifungal, anticancer, and anti-diabetic agents. The characterization techniques confirmed the biosynthesis, crystalline nature, structure, size, elemental composition of ZnO NPs and bioactive compounds that exist in A. scoparia extract accounting for Zn2+ ion reduction, capping and stabilization of ZnO NPs. The ZnO NPs displayed remarkable inhibitory activity against E. coli, E. aerigenes, S. aureus, P. oryzae, F. thapsinum, and F. semitectum compared to antibiotic standards. The ZnO NPs showed significant inhibitory effects on cancer cell lines, while it had no toxic effect on Vero normal cell line. The ZnO NPs (30 mg/kg)-treated diabetic rats showed significantly higher levels of insulin and lower AST, ALT and blood glucose compared with the STZ induced diabetic group and other treated groups (P < 0.05). The ZnO NPs- and extract-treated rats showed significantly higher levels of IR, GluT2, and GCK expression and lower TNFα expression compared with the STZ induced diabetic rats. Our findings showed that ZnO NPs represented an outstanding performance for biological applications.  相似文献   
2.
Knowledge and Information Systems - Physics-based models are widely used to study dynamical systems in a variety of scientific and engineering problems. However, these models are necessarily...  相似文献   
3.
We present an optimal solution procedure for minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem. In this problem, we assume the constrained renewable resources are limited to very expensive equipments and machines that are used in other projects and are not available in all periods of time of a project. In other words, for each resource, there is a dictated ready date as well as a due date such that no resource can be available before its ready date but the resources are permitted to be used after their due dates by paying penalty cost depending on the resource type. We also assume that only one unit of each resource type is available and no activity needs more than it for execution. The objective is to determine a schedule with minimal total weighted resource tardiness penalty costs. For this purpose, we present a branch-and-bound algorithm in which the branching scheme starts from a graph representing a set of conjunctions (the classical finish-start precedence constraints) and disjunctions (introduced by the resource constraints). In the search tree, each node is branched to two child nodes based on the two opposite directions of each undirected arc of disjunctions. Selection sequence of undirected arcs in the search tree affects the performance of the algorithm. Hence, we developed different rules for this issue and compare the performance of the algorithm under these rules using a randomly generated benchmark problem set.  相似文献   
4.
Hydrodynamics of a gas‐solid fluidized bed at elevated temperatures was investigated by analyzing pressure fluctuations in time and frequency domains. Sand particles were fluidized with air at various bed temperatures. At a constant gas velocity, the standard deviation, power spectrum density function, and wide‐band energy of pressure fluctuations reach a maximum at 300 °C. Increasing the temperature to this value causes larger bubble sizes and after the bubbles reach their maximum size, they break into smaller bubbles. The Archimedes number decreases with higher temperature and the type of fluidization becomes closer to that of Geldart A boundary at this maximum temperature. Based on estimation of the drag force acting on the emulsion phase, it was concluded that 300 °C was a transition temperature at which the drag force reaches a minimum due to a significant change of interparticle and hydrodynamic forces.  相似文献   
5.
6.
Electrolyte powders with low sintering temperature and high-ionic conductivity can considerably facilitate the fabrication and performance of solid oxide fuel cells (SOFCs). Gadolinia-doped ceria (GDC) is a promising electrolyte for developing intermediate- and low-temperature (IT and LT) SOFCs. However, the conventional sintering temperature for GDC is usually above 1200 °C unless additives are used. In this work, a nanocrystalline powder of GDC, (10 mol% Gd dopant, Gd0.1Ce0.9O1.95) with low-sintering temperature has been synthesized using ammonium benzoate as a novel, environmentally friendly and cost-effective precursor/precipitant. The synthesized benzoate powders (termed washed- and non-washed samples) were calcined at a relatively low temperature of 500 °C for 6 h. Physicochemical characteristics were determined using thermal analysis (TG/DTA), Raman spectroscopy, FT-IR, SEM/EDX, XRD, nitrogen absorptiometry, and dilatometry. Dilatometry showed that the newly synthesized GDC samples (washed and non-washed routes) start to shrink at temperatures of 500 and 600 °C (respectively), reaching their maximum sintering rate at 650 and 750 °C. Sintering of pelletized electrolyte substrates at the sintering onset temperature for commercial GDC powder (950 °C) for 6 h, showed densification of washed- and non-washed samples, obtaining 97.48 and 98.43% respectively, relative to theoretical density. The electrochemical impedance spectroscopy (EIS) analysis for the electrolyte pellets sintered at 950 °C showed a total electrical conductivity of 3.83 × 10?2 and 5.90 × 10?2 S cm?1 (under air atmosphere at 750 °C) for washed- and non-washed samples, respectively. This is the first report of a GDC synthesis, where a considerable improvement in sinterability and electrical conductivity of the product GDC is observed at 950 °C without additives addition.  相似文献   
7.
Due to importance and wide applications, CoCr2O4 ceramic pigment nanoparticles were synthesized via low-temperature solution combustion route by different fuels including ethylenediamine/oxalic acid, ethylenediamine/citric acid, oxalic acid/citric acid and ethylenediamine/oxalic acid/citric acid. Physicochemical properties of the synthesized samples were determined by different techniques such as fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX) and color/optical properties were evaluated based on CIELAB system by spectrophotometer. Moreover, thermodynamic considerations of combustion reactions for CoCr2O4 nanopigments formation in terms of calculated adiabatic flame temperature and enthalpy of combustion reaction were studied. The Comparison of results and data showed that cobalt chromite pigment nanoparticles synthesized by using ethylenediamine/citric acid and ethylenediamine/oxalic acid/citric acid fuels exhibited higher purity, smaller crystallite size and lower degree agglomeration.  相似文献   
8.
This paper reports a novel processing route for producing AgO2/GrO nanocomposites by hydrothermal method. AgO2/GrO nanocomposites as semiconductor materials have been synthesized via a facile one-step process using AgNO3 and glucose as starting reagents. We investigated the influence of the thermal decomposition temperature and reaction time, on the morphology and the particle size of AgO2/GrO nanocomposites. The AgO2/GrO nanocomposites were characterized by FT-IR, UV–Vis spectra, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The obtained results exhibited that the synthesized nano product by calcining for 4 h showed excellent uniformity and quality.  相似文献   
9.
10.
Multiwalled carbon nanotubes (MWNTs) were coated with polypyrrole (PPy) using in situ enzymatic polymerization of pyrrole catalyzed by a laccase (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) from Trametes versicolor. Transmission electron microscopy revealed that the MWNTs were uniformly coated with very thin layers of PPy without any indication of globular polymer aggregate formations. The enzymatic synthesis of the MWNTs/PPy composites was quite simple being performed in a one‐pot aqueous solution (pH 4.0) under mild reaction conditions. The potential of the composites with respect to the development of energy storage devices was demonstrated by fabricating a two‐electrode coin cell capacitor (diameter 20 mm, thickness 1.6 mm) utilizing the composites as electrode materials. The capacitance of the cell was 28.0 F g?1 for the electrode material as measured by a galvanostatic charge–discharge method. The energy density and power density were 2.55 and 805 W kg?1, respectively, which were close to those of the capacitors classified as ultracapacitors. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43307.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号