首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学工业   1篇
能源动力   4篇
无线电   3篇
一般工业技术   1篇
冶金工业   2篇
自动化技术   3篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Providing differentiated service in a consolidated storage environment is a challenging task. To address this problem, we introduce FAIRIO, a cycle-based I/O scheduling algorithm that provides differentiated service to workloads concurrently accessing a consolidated RAID storage system. FAIRIO enforces proportional sharing of I/O service through fair scheduling of disk time. During each cycle of the algorithm, I/O requests are scheduled according to workload weights and disk-time utilization history. Experiments, which were driven by the I/O request streams of real and synthetic I/O benchmarks and run on a modified version of DiskSim, provide evidence of FAIRIO’s effectiveness and demonstrate that fair scheduling of disk time is key to achieving differentiated service in a RAID storage system. In particular, the experimental results show that, for a broad range of workload request types, sizes, and access characteristics, the algorithm provides differentiated storage throughput that is within 10% of being perfectly proportional to workload weights; and, it achieves this with little or no degradation of aggregate throughput. The core design concepts of FAIRIO, including service-time allocation and history-driven compensation, potentially can be used to design I/O scheduling algorithms that provide workloads with differentiated service in storage systems comprised of RAIDs, multiple RAIDs, SANs, and hypervisors for Clouds.  相似文献   
2.
The development of microchemomechanical systems (MCMS) as an analogy to microelectromechanical systems (MEMS) is reviewed, with the distinction that the mechanical actuation of microscale structures is effected by chemical cues as opposed to electricity. The intellectual motivation to pursue MCMS, or the creation of integrated chemical‐stimuli‐responsive devices, is that such structures are widely observed in nature. From a practical standpoint, since chemicals can readily diffuse and produce changes over large distances, this approach is especially attractive in enabling wireless and autonomous devices at small size scales.  相似文献   
3.
System noise or Jitter is the activity of hardware, firmware, operating system, runtime system, and management software events. It is shown to disproportionately impact application performance in current generation large-scale clustered systems running general-purpose operating systems (GPOS). Jitter mitigation techniques such as co-scheduling jitter events across operating systems improve application performance but their effectiveness on future petascale systems is unknown. To understand if existing jitter mitigation solutions enable scalable petascale performance, we construct two complementary jitter models based on detailed analysis of system noise from the nodes of a large-scale system running a GPOS. We validate these two models using experimental data from a system consisting of 256 GPOS instances with 8192 CPUs. Based on our models, we project a minimum slowdown of 1.8%, 4.1%, and 6.5% for applications executing on a similar one petaflop system running 1024 GPOS instances and having global synchronization operations once every 100 ms, 10 ms, and 1 ms, respectively. Our projections indicate that–although existing mitigation solutions enable scalable petascale performance–additional techniques are required to contain the impact of jitter on multi-petaflop systems, especially for tightly synchronized applications.  相似文献   
4.
Important injection parameters such as fuel injection timing (FIT) and fuel injection pressure (FIP) on different piston bowl geometries substantially impact the performance, emissions, and combustion characteristics of a common rail direct injection engine. The aim of this study deals with the effects of piston bowl geometry (hemispherical bowl [HSB], troded bowl [TRB], and re-entrant bowl [REB]), FIP (200, 220, and 240 bar), and variable FIT (20, 24, and 28°bTDC) with hydrogen-diesel/1-pentanol (B20) (80% diesel and 20% pentanol) with a constant flow rate of hydrogen at 12 Lpm. Furthermore, to decrease emission standards and energy consumption, biodiesel and hydrogen are the ideal substitutes for conventional fuels. REB outperforms HSB and TRB in terms of brake thermal efficiency (5.67%) and hydrocarbon (8% reduction), increasing the FIP at full load (240 bar). However, with the increase in the FIP in the REB, a slight reduction in nitrogen oxide (NOx) emissions (2%) is observed. With an increase in FIP in the case of REB, net heat release rate, peak pressure (in-cylinder), and rate of pressure rise all rise significantly by 3.4%, 4.2%, and 2.3%. NOx emissions are marginally enhanced with higher FIP and advanced FIT. It is found that changing the piston shape and FIP simultaneously is a potential alternative for improving engine performance and lowering emissions.  相似文献   
5.
Aluminum–lead/10 wt% fly-ash powder mixtures containing 0–20 wt% lead (Pb) were prepared. These powder mixes were compacted in the pressure range of 200–400 MPa by single action die compaction process. The prepared compacts were sintered in the temperature range of 500, 530, 560 and 590 °C in an argon gas atmosphere for duration of 45 min. For the sintered compacts, the sintered density, hardness and compressive strength were reported. Sintered density, hardness and compressive strength increased with the increase in compaction pressure. Sintered density increased whereas the hardness and the compressive strength decreased with the addition of Pb.  相似文献   
6.
This study focuses on the influence of oxygen addition on ethanol steam reforming (ESR) reaction performed in a dense Pd–Ag membrane reactor (MR) for producing hydrogen directly available for feeding a polymer electrolyte membrane fuel cell (PEMFC). In particular, oxygen addition can prevent ethylene and ethane formation caused by dehydration of ethanol as well as carbon deposition. The MR is operated at 400 °C, H2O:C2H5OH = 11:1 as feed molar ratio and space velocity (GHSV) ∼2000 h−1. A commercial Ru-based catalyst was packed into the MR and a nitrogen stream of 8.4 × 10−2 mol/h as sweep gas was flowed into the permeate side of the reactor. Both oxidative ethanol steam reforming (OESR) and ESR performances of the Pd–Ag MR were analyzed in terms of ethanol conversion to gas, hydrogen yield, gas selectivity and CO-free hydrogen recovery by varying O2:C2H5OH feed molar ratio and reaction pressure. Moreover, the experimental results of the OESR and ESR reactions carried out in the same Pd–Ag MR are compared in order to point out the benefits due to the oxygen addition. Experimentally, this work points out that, overcoming O2:C2H5OH = 1.3:1, ethanol conversion is lowered with a consequent drops of both hydrogen yield and hydrogen recovery. Vice versa, a complete ethanol conversion is achieved at 2.5 bar and O2:C2H5OH = 1.3:1, whereas the maximum CO-free hydrogen recovery (∼30%) is obtained at O2:C2H5OH = 0.6:1.  相似文献   
7.
Journal of Materials Science: Materials in Electronics - Ba3(PO4)2 structure with Rhombohedral phase was prepared by a facile wet chemical method. In this experiment, NaOH is used as a surfactant...  相似文献   
8.
Hydrogen production by steam reforming of ethanol (SRE) was studied using steam-to-ethanol ratio of 3:1, between the temperature range of 150–450 °C over metal and metal oxide nanoparticle catalysts (Ni, Co, Pt and Rh) supported on carbon nanotubes (CNTs) and compared to a commercial catalyst (Ni/Al2O3). The aim was to find out the suitability of CNTs supports with metal nanoparticles for the SRE reactions at low temperatures. The idea to develop CNT-based catalysts that have high selectivity for H2 is one of the driving forces for this study. The catalytic performance was evaluated in terms of ethanol conversion, product gas composition, hydrogen yield and selectivity to hydrogen. The Co/CNT and Ni/CNT catalysts were found to have the highest activity and selectivity towards hydrogen formation among the catalysts studied. Almost complete ethanol conversion is achieved over the Ni/CNT catalyst at 400 °C. The highest hydrogen yield of 2.5 is, however, obtained over the Co/CNT catalyst at 450 °C. The formation of CO and CH4 was very low over the Co/CNT catalyst compared to all the other tested catalysts. The Pt and Rh CNT-based catalysts were found to have low activity and selectivity in the SRE reaction. Hydrogen production via steam reforming of ethanol at low temperatures using especially Co/CNT catalyst has thus potential in the future in e.g. the fuel cell applications.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号