首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   641篇
  免费   44篇
  国内免费   4篇
电工技术   10篇
综合类   1篇
化学工业   204篇
金属工艺   11篇
机械仪表   19篇
建筑科学   14篇
矿业工程   1篇
能源动力   81篇
轻工业   84篇
水利工程   8篇
石油天然气   8篇
无线电   56篇
一般工业技术   80篇
冶金工业   26篇
原子能技术   2篇
自动化技术   84篇
  2024年   2篇
  2023年   7篇
  2022年   16篇
  2021年   42篇
  2020年   35篇
  2019年   31篇
  2018年   50篇
  2017年   35篇
  2016年   38篇
  2015年   23篇
  2014年   36篇
  2013年   91篇
  2012年   46篇
  2011年   60篇
  2010年   42篇
  2009年   27篇
  2008年   22篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   2篇
  2003年   5篇
  2000年   10篇
  1999年   3篇
  1998年   5篇
  1997年   9篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1965年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有689条查询结果,搜索用时 15 毫秒
1.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
2.
Kirovskaya  I. A.  Filatova  T. N.  Nor  P. E. 《Semiconductors》2021,55(2):228-233
Semiconductors - According to developed methods, in the fields of the mutual solubility of initial binary compounds (InP, InSb, and CdS), solid solutions of the InP–CdS and InSb–CdS...  相似文献   
3.
4.
A simple, cost-effective, and novel chemical sensor for ammonia (NH3) gas detection was developed from polyaniline (PANI)/quail eggshell (QES) composites. QES is a natural waste enriched in calcium carbonate. In this work, pure PANI was synthesized from chemical oxidation method and PANI/QES composites were prepared from physical mixing of QES with the synthesized PANI at different mass ratio. A series of complementary techniques including Fourier transform infrared and ultraviolet-visible spectrometers, scanning electron microscope with energy dispersive detection coupled with mapping, thermogravimetric analysis, and X-ray diffractometer were used to characterize the physicochemical and textural properties of the biocomposites. From the results, PANI/QES composite with a mass ratio of 1 exhibited the lowest NH3 detection limit of 5.24 ppm with a linear correlation coefficient (R2) of close to unity (0.9932) between the signal and NH3 gas concentration. As a whole, the PANI/QES biocomposites synthesized from this work exhibited excellent selectivity toward NH3 gas even in the presence of other gas impurities, such as acetone, ethanol, and hexane. For the sensor reusability, the PANI/QES biocomposites can be reused in the application of NH3 gas detection for at least 4 cycles.  相似文献   
5.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
6.
7.
Temperature programmed reduction (TPR) analysis was applied to investigate the chemical reduction progression behavior of molybdenum oxide (MoO3) catalyst. The composition and morphology of the reduced phases were characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). The reduction progression of MoO3 catalyst was attained with different reductant types and concentration (10% H2/N2, 10% and 20% CO/N2 (%, v/v)). Two different modes of reduction process were applied. The first approach of reduction involved non-isothermal mode reduction up to 700 °C, while the second approach of reduction involved the isothermal mode reduction for 60 min at 700 °C. Hydrogen temperature programmed reduction (H2-TPR) results showed the reduction progression of three-stage reduction of MoO3 (Mo6+ → Mo5+ → Mo4+ → Mo0) with Mo5+ and Mo4+. XRD analysis confirmed the formation of Mo4O11 phase as an intermediate phase followed by MoO2 phase. After 60 min of isothermal reduction, peaks of metallic molybdenum (Mo) appeared. Whereas, FESEM analysis showed porous crater-like structure on the surface cracks of MoO2 layer which led to the growth of Mo phase. Meanwhile, the reduction of MoO3 catalyst in 10% carbon monoxide (CO) showed the formation of unstable intermediate phase of Mo9O26 at the early stage of reduction. Furthermore, by increasing 20% CO led to the carburization of MoO2 phase, resulted in the formation of Mo2C rather than the formation of metallic Mo, as confirmed by XPS analysis. Therefore, the presented study shows that hydrogen gave better reducibility due to smaller molecular size, which contributed to high diffusion rate and achieved deeper penetration into the MoO3 catalyst compared to carbon monoxide reductant. Hence, the reduction of MoO3 in carbon monoxide atmosphere promoted the formation of Mo2C which was in agreement with the thermodynamic assessment.  相似文献   
8.
In this paper, low-cost and two-cycle hardware structures of the PRINCE lightweight block cipher are presented. In the first structure, we proposed an area-constrained structure, and in the second structure, a high-speed implementation of the PRINCE cipher is presented. The substitution box (S-box) and the inverse of S-box (S-box−1) blocks are the most complex blocks in the PRINCE cipher. These blocks are designed by an efficient structure with low critical path delay. In the low-cost structure, the S-boxes and S-boxes−1 are shared between the round computations and the intermediate step of PRINCE cipher. Therefore, the proposed architecture is implemented based on the lowest number of computation resources. The two-cycle implementation of PRINCE cipher is designed by a processing element (PE), which is a general and reconfigurable element. This structure has a regular form with the minimum number of the control signal. Implementation results of the proposed structures in 180-nm CMOS technology and Virtex-4 and Virtex-6 FPGA families are achieved. The proposed structures, based on the results, have better critical path delay and throughput compared with other's related works.  相似文献   
9.
Highly active ReS2 nanocatalysts were prepared by CVD method and characterized by XRD, BET -BJH, Raman spectroscopy, XPS, TPR, NH3-TPD, SEM, and HRTEM techniques. Catalytic activities were used in upgrading heavy crude oil using methane as hydrogen source. The results showed a significant increase in API and decrease in sulfur and nitrogen content of crude oil. RSM technique was used to investigate the interactive effects of temperature (200–400 °C), pressure (20–40 bar) and dosage of nanocatalyst (0.5–2 wt. %) on the performance of HDS reaction. The results represent that the maximum predicted HDS activity (74.375%) was estimated under the optimal conditions (400 °C, 20 bars, and 2 wt % of nanocatalyst). Also, the effect of reaction temperature, pressure and dosage of ReS2 nanorods catalyst on HDN of heavy crude oil was investigated and highest efficiency in the HDN process (93%) occurred at 400 °C and 40 bar using 2 wt % ReS2.  相似文献   
10.
A technique was developed for transfer of fat and polychlorinated biphenyls from cod liver oil into the lipophilic gel Lipidex 5000. Subsequent elution of the gel separated about 60% of the fat from the sample. Following further purification on aluminium oxide and silica gel, toxic non-ortho- and mono-ortho-PCB congeners were isolated in two separate fractions on charcoal. Recoveries were studied by addition of twelve different PCB congeners to 0.2 g of fat. The non-ortho-PCBs were labelled with 13C. The recoveries of 5-50 ng of the unlabelled compounds were 80-100% and those of 50-100 pg of the labelled compounds were 76-106%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号