首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18897篇
  免费   1518篇
  国内免费   613篇
电工技术   976篇
技术理论   2篇
综合类   862篇
化学工业   3200篇
金属工艺   857篇
机械仪表   1086篇
建筑科学   1006篇
矿业工程   330篇
能源动力   692篇
轻工业   1558篇
水利工程   278篇
石油天然气   498篇
武器工业   128篇
无线电   2817篇
一般工业技术   2690篇
冶金工业   1296篇
原子能技术   172篇
自动化技术   2580篇
  2024年   53篇
  2023年   232篇
  2022年   472篇
  2021年   646篇
  2020年   506篇
  2019年   442篇
  2018年   515篇
  2017年   568篇
  2016年   619篇
  2015年   674篇
  2014年   923篇
  2013年   1201篇
  2012年   1246篇
  2011年   1244篇
  2010年   1071篇
  2009年   1147篇
  2008年   1011篇
  2007年   966篇
  2006年   871篇
  2005年   731篇
  2004年   667篇
  2003年   608篇
  2002年   724篇
  2001年   594篇
  2000年   453篇
  1999年   397篇
  1998年   516篇
  1997年   320篇
  1996年   275篇
  1995年   220篇
  1994年   200篇
  1993年   162篇
  1992年   85篇
  1991年   97篇
  1990年   77篇
  1989年   78篇
  1988年   52篇
  1987年   52篇
  1986年   49篇
  1985年   37篇
  1984年   34篇
  1983年   20篇
  1982年   18篇
  1981年   25篇
  1980年   19篇
  1979年   10篇
  1978年   15篇
  1977年   16篇
  1976年   22篇
  1975年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The exploitation of recycled carbonaceous catalysts from renewable biomass resources such as chitin is a crucial issue for the development of the sustainable society. In this article, the chitin-based N and O doped carbon microspheres (ChC) were fabricated by a simple dissolution, sol–gel transformation, and the carbonization methods. Subsequently, the novel magnetic Ag-Fe3O4@chitin-based carbon microspheres catalyst (MChC) was successfully constructed through the in situ redox reaction. The as-prepared MChC possessed rich micropores with high-surface area, and a narrow size distribution (50–120 μm). The Ag-Fe3O4 nanoparticles were immobilized through the interaction with C, N, and O atoms in the pores of MChC. The reduction of 4-nitrophenol was applied to evaluate the catalytic activity of MChC. 4-Nitrophenol (4-NP) could be fully reduced to 4-aminophenol (4-AP) in 5 min with the catalyst MChC-45. Moreover, MChC could be collected in solution with an external magnet in 8 s and remained relatively high-catalytic activity after 10 cycle times. This work provided novel ideas for the fabrication of doped carbon material from biomass and promoted its utilization in nanocatalytic applications.  相似文献   
3.
Engineering novel Sn-based bimetallic materials could provide intriguing catalytic properties to boost the electrochemical CO2 reduction. Herein, the first synthesis of homogeneous Sn1−xBix alloy nanoparticles (x up to 0.20) with native Bi-doped amorphous SnOx shells for efficient CO2 reduction is reported. The Bi-SnOx nanoshells boost the production of formate with high Faradaic efficiencies (>90%) over a wide potential window (−0.67 to −0.92 V vs RHE) with low overpotentials, outperforming current tin oxide catalysts. The state-of-the-art Bi-SnOx nanoshells derived from Sn0.80Bi0.20 alloy nanoparticles exhibit a great partial current density of 74.6 mA cm−2 and high Faradaic efficiency of 95.8%. The detailed electrocatalytic analyses and corresponding density functional theory calculations simultaneously reveal that the incorporation of Bi atoms into Sn species facilitates formate production by suppressing the formation of H2 and CO.  相似文献   
4.
A series of anionic conjugated polyelectrolytes (CPEs) is synthesized based on poly(fluorene-co-phenylene) by varying the side-chain ionic density from two to six per repeat units (MPS2-TMA, MPS4-TMA, and MPS6-TMA). The effect of MPS2, 4, 6-TMA as interlayers on top of a hole-extraction layer of poly(bis(4-phenyl)-2,4,6-trimethylphenylamine (PTAA) is investigated in inverted perovskite solar cells (PeSCs). Owing to the improved wettability of perovskites on hydrophobic PTAA with the CPEs, the PeSCs with CPE interlayers demonstrate a significantly enhanced device performance, with negligible device-to-device dependence relative to the reference PeSC without CPEs. By increasing the ionic density in the MPS-TMA interlayers, the wetting, interfacial defect passivation, and crystal growth of the perovskites are significantly improved without increasing the series resistance of the PeSCs. In particular, the open-circuit voltage increases from 1.06 V for the PeSC with MPS2-TMA to 1.11 V for the PeSC with MPS6-TMA. The trap densities of the PeSCs with MPS2,4,6-TMA are further analyzed using frequency-dependent capacitance measurements. Finally, a large-area (1 cm2) PeSC is successfully fabricated with MPS6-TMA, showing a power conversion efficiency of 18.38% with negligible hysteresis and a stable power output under light soaking for 60 s.  相似文献   
5.
6.
7.
Peer-to-Peer Networking and Applications - P2P-TV is a TV system that receives content through a peer-to-peer network. Content is stored in the distributed manner then to be serviced to users, and...  相似文献   
8.
Tricalcium silicate (C3S) and hydroxyapatite (HAp) composites were fabricated through the sol-gel process. The aim of this research is to improve the biocompatibility of C3S through HAp addition and study the potential of using this as coating materials. The composites (HAp/C3S) were characterised by Fourier transform infrared spectrometry, thermal gravity-differential thermal analysis and X-ray diffraction. The working and setting times of cement pastes were tested using Gillmore needle. Mechanical properties were examined by nanoindentation and material testing system. In vitro biocompatibility of the materials were studied by cell attachment and viability of L929 and MG-63 cells. HAp/C3S as a coating material on gelatin film were measured with the surface roughness and imaged by scanning electron microscope. With the addition of HAp, no undesirable free CaO was detected with the synthesis by the sol-gel preparation. The pH values of HAp added groups were between 7.54 and 8.76, which were much lower than pure C3S group (pH?=?11.75). For in vitro studies, the presence of HAp could effectively enhance the cell attachment and viability of both L929 and MG-63 cells grown in the extract or directly on the composites. However, the mechanical properties of the composites were impaired as compared to pure C3S. Lastly, HAp/C3S cement could be evenly coated on gelatin film. HAp is successfully demonstrated to improve C3S biocompatibility with this new composites HAp/C3S. C-75 (75% C3S and 25% HAp), in particular, has good biocompatibility, relatively high compressive strength and can be uniformly coated onto gelatin film. Thus, C-75 is a promising material for further investigation as a coating on other biopolymers.  相似文献   
9.
10.
Lithium-sulfur batteries (LSBs) are considered a promising next-generation energy storage device owing to their high theoretical energy density. However, their overall performance is limited by several critical issues such as lithium polysulfide (PS) shuttles, low sulfur utilization, and unstable Li metal anodes. Despite recent huge progress, the electrolyte/sulfur ratio (E/S) used is usually very high (≥20 µL mg−1), which greatly reduces the practical energy density of devices. To push forward LSBs from the lab to the industry, considerable attention is devoted to reducing E/S while ensuring the electrochemical performance. To date, however, few reviews have comprehensively elucidated the possible strategies to achieve that purpose. In this review, recent advances in low E/S cathodes and anodes based on the issues resulting from low E/S and the corresponding solutions are summarized. These will be beneficial for a systematic understanding of the rational design ideas and research trends of low E/S LSBs. In particular, three strategies are proposed for cathodes: preventing PS formation/aggregation to avoid inadequate dissolution, designing multifunctional macroporous networks to address incomplete infiltration, and utilizing an imprison strategy to relieve the adsorption dependence on specific surface area. Finally, the challenges and future prospects for low E/S LSBs are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号