首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
建筑科学   1篇
能源动力   1篇
  2013年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Nitisoravut S  Klomjek P 《Water research》2005,39(18):4413-4419
A mathematical model was developed in order to describe the system behavior and performance of a constructed wetland (CW) treatment under salt-affected conditions. The rate of biodegradation of organic wastes was modeled using the first-order kinetics while the effect of salt concentrations was accounted by growth inhibition. Experimental data were used to determine model constants of the mathematical model. The experimental units were planted with cattail (Typha angustifolia) and fed with spiked municipal wastewater. The hydraulic retention time varied from 12 to 120 h and wastewater conductivity was in the range of 4-32 mS/cm. At specified conditions the model was found to well describe the trend of the experimental data in terms of BOD removal with the Pearson correlation of 0.872. The model also permits construction of a nomograph which can be used to aid the design and prediction of CW treatment under salt-affected conditions.  相似文献   
2.
Four different M2+–Mg–Al hydrotalcite (HT) materials were investigated for their effect on biohydrogen enhancement, where M2+ is Fe and/or Zn. HTs were synthesized by the coprecipitation method and characterized by infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). The effect of Fe–Zn–Mg–Al HTs dose (0–833 mg/L) on hydrogen production was investigated in batch tests using sucrose-fed anaerobic mixed culture at 37 °C. The best catalytic activity was observed on Mg–Al HT at 167 mg/L with the maximum hydrogen yield of 2.30 ± 0.37 mol H2/mol sucrose, which was 44% higher than the control. The major metabolites detected in the test were acetic acid (3.6 g/L), butyric acid (4.1 g/L), and lactic acid (0.5 g/L). The basic properties of the different catalysts played an important role in stimulating or inhibiting the activity of hydrogen producing bacteria. Calcined Mg–Al HT did not promote biohydrogen production, suggesting that the catalytic enhancement was related to immobilization of bacteria in the electrostatically charged HT interlayers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号