首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   1篇
电工技术   1篇
化学工业   9篇
金属工艺   55篇
机械仪表   6篇
建筑科学   1篇
能源动力   3篇
轻工业   4篇
无线电   2篇
一般工业技术   59篇
冶金工业   9篇
自动化技术   12篇
  2020年   3篇
  2018年   1篇
  2017年   1篇
  2016年   7篇
  2015年   2篇
  2014年   9篇
  2013年   12篇
  2012年   19篇
  2011年   14篇
  2010年   15篇
  2009年   11篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   6篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1985年   4篇
  1978年   2篇
  1976年   1篇
  1971年   1篇
排序方式: 共有161条查询结果,搜索用时 203 毫秒
1.
Solubilization of the armchair, metallic (10,10) single-walled carbon nanotubes (SWCNTs) in toluene is modeled using molecular dynamics simulations. Inter- and intra-molecular atomic interactions in the SWCNT + toluene system are represented using COMPASS (Condensed-phased Optimized Molecular Potential for Atomistic Simulation Studies), the first ab initio forcefield that enables an accurate and simultaneous prediction of various gas-phase and condensed-phase properties of organic and inorganic materials.The results obtained show that due to a significant drop in the configurational entropy of toluene, the solvation Gibbs free energy for these nanotubes in toluene is small but positive suggesting that a suspension of these nanotubes in toluene is not stable and that the nanotubes would fall out of the solution. This prediction is consistent with experimental observations.  相似文献   
2.
Chemical Vapor Deposition (CVD) of carbon nanotubes from a gas mixture consisting of methane (carbon precursor) and hydrogen (a carrier gas) in the presence of cobalt, nickel or iron catalytic particles in a cylindrical reactor is modeled at the reactor length-scale by solving a continuum-based coupled boundary-layer laminar-flow hydrodynamics, heat-transfer, gas-phase chemistry and surface chemistry problem. The model allows determination of the gas-phase fields for temperature, velocity, and various species as well as the surface-species coverages and the carbon deposition rate. Various available experimental and theoretical assessments are used to construct the necessary database for gas-phase and surface chemistry and gas-phase transport parameters. A reasonably good agreement is found between the model predicted and the experimentally measured carbon nanotubes deposition rates over a relatively large range of processing conditions.  相似文献   
3.
The commercial finite element package ABAQUS has been used to analyse the crack bridging process by Ti-15 at%V -phase particles dispersed in -TiAl matrix in the presence of particle–matrix decohesion. Both the particle–matrix decohesion potential and the -phase materials constitutive relations are found to have a major effect on the ductility, fracture toughness and failure mode of the – two-phase material. The interface potential is found to primarily affect the distribution of the normal interface strength ahead of the advancing interfacial crack and the mode (gradual versus sudden) of decohesion. The -phase materials constitutive relations are found to influence the location of nucleation of the interfacial cracks and, in turn, the mode of decohesion. A metastable -phase that can plastically deform at low stress levels by undergoing a stress-assisted martensitic transformation, but experience a high rate of strain hardening is found to give rise to the largest levels of ductility and fracture toughness is the – two-phase material. © 1998 Kluwer Academic Publishers  相似文献   
4.
Molecular statics atomistic simulations of the Ti–15 at% V body-centred cubic (bcc) -phase–-TiAl interface and – lamellar boundary decohesion processes have been carried out to determine the corresponding decohesion potentials. The potentials are subsequently related to the dislocation structure of the interface–boundary. Atomic interactions have been represented using the appropriate embedded atom method (EAM) interatomic potential functions. The results obtained show that the decohesion potential functions are quite complex because they have to account for the instabilities that occur under some modes of interface decohesion and for the periodic character of the interfacial shear. Lastly, the use of decohesion potentials to derive constitutive relations for continuum-type interfacial elements and their implementation in the finite element method are presented. © 1998 Kluwer Academic Publishers  相似文献   
5.
Johnson-Cook strength material model is frequently used in finite-element analyses of various manufacturing processes involving plastic deformation of metallic materials. The main attraction to this model arises from its mathematical simplicity and its ability to capture the first-order metal-working effects (e.g., those associated with the influence of plastic deformation, rate of deformation, and the attendant temperature). However, this model displays serious shortcomings when used in the engineering analyses of various hot-working processes (i.e., those utilizing temperatures higher than the material recrystallization temperature). These shortcomings are related to the fact that microstructural changes involving: (i) irreversible decrease in the dislocation density due to the operation of annealing/recrystallization processes; (ii) increase in grain-size due to high-temperature exposure; and (iii) dynamic-recrystallization-induced grain refinement are not accounted for by the model. In this study, an attempt is made to combine the basic physical-metallurgy principles with the associated kinetics relations to properly modify the Johnson-Cook material model, so that the model can be used in the analyses of metal hot-working and joining processes. The model is next used to help establish relationships between process parameters, material microstructure and properties in friction stir welding welds of AA5083 (a non-age-hardenable, solid-solution strengthened, strain-hardened/stabilized Al-Mg-Mn alloy).  相似文献   
6.
Spallation is a fracture mode commonly observed in ballistically/blast-wave-loaded structures. The interaction between decompression waves generated within the target structure produces tensile stresses which, if of a sufficient magnitude, may cause material damage and ultimate fracture (spallation). In this study, the phenomenon of spall-fracture is analyzed within a one-dimensional Lagrangian framework. Two distinct analyses are carried out. Within the first analysis, decompression waves are treated as decompression shocks, which simplified the analysis and enabled the formation of spallation-strength-based material index. In the second analysis, decompression waves are treated as smooth (centered simple) waves. This increased the fidelity of the computational analysis, but the material-selection procedure could be done only numerically and an explicit formulation of the spallation-strength-based material-selection index could not be carried out. Overall, the two analyses yielded similar results for the spallation-strength-based material-selection criterion suggesting that the simpler (decompression shock based) one is still adequate for use in the material-selection process.  相似文献   
7.
The propagation of uniaxial-stress planar shocks in granular materials is analyzed using a conventional shock-physics approach. Within this approach, both compression shocks and decompression waves are treated as (stress, specific volume, particle velocity, mass-based internal energy density, temperature, and mass-based entropy density) propagating discontinuities. In addition, the granular material is considered as being a continuum (i.e., no mesoscale features like grains, voids, and their agglomerates are considered). However, while the granular material is treated as a (smeared-out) continuum, it is recognized that it contains a solid constituent (parent matter), and that the structurodynamic properties (i.e., Equations of State (EOS) and Hugoniot relations) of the granular material are related to its parent matter. Three characteristic shock loading regimes of granular material are considered and, in each case, an analysis is carried out to elucidate shock attenuation and energy dissipation processes. In addition, an attempt is made to identify a metric (a combination of the material parameters) which quantifies the intrinsic ability of a granular material to attenuate a shock and dissipate the energy carried by the shock. Toward that end, the response of a typical granular material to a flat-topped compressive stress pulse is analyzed in each of the three shock loading regimes.  相似文献   
8.
The effect of materials processing- and component manufacturing-induced uncertainties in material properties and component shape and size on the reliability of component performance is investigated. Specifically, reliability of a suspension system component from a high-mobility multipurpose wheeled vehicle which typically can fail under low-cycle strain-based fatigue conditions is analyzed. Toward that end, the most advanced reliability-based design optimization methods available in the literature were combined with the present understanding of low-cycle fatigue durability and applied to the component in question. This entailed intricate integration of several computational tools such as multibody vehicle dynamics, finite-element simulations, and fatigue strain-life assessment/prediction techniques. The results obtained clearly revealed the importance of consideration of material property uncertainties in attaining vehicle performance of critical structural components in complex systems (e.g., a vehicle).  相似文献   
9.
A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.  相似文献   
10.
To combat the problem of traumatic brain injury (TBI), a signature injury of the current military conflicts, there is an urgent need to design head protection systems with superior blast/ballistic impact mitigation capabilities. Toward that end, the blast impact mitigation performance of an advanced combat helmet (ACH) head protection system equipped with polyurea suspension pads and subjected to two different blast peak pressure loadings has been investigated computationally. A fairly detailed (Lagrangian) finite-element model of a helmet/skull/brain assembly is first constructed and placed into an Eulerian air domain through which a single planar blast wave propagates. A combined Eulerian/Lagrangian transient nonlinear dynamics computational fluid/solid interaction analysis is next conducted in order to assess the extent of reduction in intra-cranial shock-wave ingress (responsible for TBI). This was done by comparing temporal evolutions of intra-cranial normal and shear stresses for the cases of an unprotected head and the helmet-protected head and by correlating these quantities with the three most common types of mild traumatic brain injury (mTBI), i.e., axonal damage, contusion, and subdural hemorrhage. The results obtained show that the ACH provides some level of protection against all investigated types of mTBI and that the level of protection increases somewhat with an increase in blast peak pressure. In order to rationalize the aforementioned findings, a shockwave propagation/reflection analysis is carried out for the unprotected head and helmet-protected head cases. The analysis qualitatively corroborated the results pertaining to the blast-mitigation efficacy of an ACH, but also suggested that there are additional shockwave energy dissipation phenomena which play an important role in the mechanical response of the unprotected/protected head to blast impact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号