首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   40篇
  国内免费   13篇
电工技术   9篇
综合类   3篇
化学工业   139篇
金属工艺   25篇
机械仪表   13篇
建筑科学   21篇
矿业工程   2篇
能源动力   31篇
轻工业   18篇
水利工程   20篇
石油天然气   7篇
无线电   60篇
一般工业技术   106篇
冶金工业   38篇
原子能技术   2篇
自动化技术   129篇
  2024年   1篇
  2023年   20篇
  2022年   38篇
  2021年   53篇
  2020年   38篇
  2019年   41篇
  2018年   51篇
  2017年   38篇
  2016年   44篇
  2015年   24篇
  2014年   30篇
  2013年   46篇
  2012年   36篇
  2011年   42篇
  2010年   18篇
  2009年   15篇
  2008年   8篇
  2007年   15篇
  2006年   13篇
  2005年   2篇
  2004年   7篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有623条查询结果,搜索用时 15 毫秒
1.
2.
Nanofluids have been known as practical materials to ameliorate heat transfer within diverse industrial systems. The current work presents an empirical study on forced convection effects of Al2O3–water nanofluid within an annulus tube. A laminar flow regime has been considered to perform the experiment in high Reynolds number range using several concentrations of nanofluid. Also, the boundary conditions include a constant uniform heat flux applied on the outer shell and an adiabatic condition to the inner tube. Nanofluid particle is visualized with transmission electron microscopy to figure out the nanofluid particles. Additionally, the pressure drop is obtained by measuring the inlet and outlet pressure with respect to the ambient condition. The experimental results showed that adding nanoparticles to the base fluid will increase the heat transfer coefficient (HTC) and average Nusselt number. In addition, by increasing viscosity effects at maximum Reynolds number of 1140 and increasing nanofluid concentration from 1% to 4% (maximum performance at 4%), HTC increases by 18%.  相似文献   
3.
The mechanical, morphological behavior and water absorption characteristics of polypropylene (PP) and silica, or PP and rice‐husk, composites have been studied. The silica used in this study as filler was a commercial type produced from soluble glass or rice husks. The compatibilizing effect of PP grafted with monomethyl itaconate (PP‐g‐MMI) and/or with vinyltriethoxysilane (PP‐g‐VTES) as polar monomers on the mechanical properties and water absorption was also investigated. In general, a high loading of the studied fillers in the polymer matrix increases the stiffness and the water absorption capacity. This effect is more noticeable in the tensile modulus of the PP/silica composite with PP‐g‐VTES as compatibilizer. However, the increase of the rice‐husk charge as a natural filler in the PP matrix decreases the stiffness, and in the presence of PP‐g‐MMI as compatibilizer in PP/rice‐husk, the tensile modulus and water absorption of the composite were improved. The better adhesion and phase continuity in the PP/silica and PP/rice‐husk composites with different compatibilizers was confirmed by the morphological study. Copyright © 2004 Society of Chemical Industry  相似文献   
4.

Over the last decade, application of soft computing techniques has rapidly grown up in different scientific fields, especially in rock mechanics. One of these cases relates to indirect assessment of uniaxial compressive strength (UCS) of rock samples with different artificial intelligent-based methods. In fact, the main advantage of such systems is to readily remove some difficulties arising in direct assessment of UCS, such as time-consuming and costly UCS test procedure. This study puts an effort to propose four accurate and practical predictive models of UCS using artificial neural network (ANN), hybrid ANN with imperialism competitive algorithm (ICA–ANN), hybrid ANN with artificial bee colony (ABC–ANN) and genetic programming (GP) approaches. To reach the aim of the current study, an experimental database containing a total of 71 data sets was set up by performing a number of laboratory tests on the rock samples collected from a tunnel site in Malaysia. To construct the desired predictive models of UCS based on training and test patterns, a combination of several rock characteristics with the most influence on UCS has been used as input parameters, i.e. porosity (n), Schmidt hammer rebound number (R), p-wave velocity (Vp) and point load strength index (Is(50)). To evaluate and compare the prediction precision of the developed models, a series of statistical indices, such as root mean squared error (RMSE), determination coefficient (R2) and variance account for (VAF) are utilized. Based on the simulation results and the measured indices, it was observed that the proposed GP model with the training and test RMSE values 0.0726 and 0.0691, respectively, gives better performance as compared to the other proposed models with values of (0.0740 and 0.0885), (0.0785 and 0.0742), and (0.0746 and 0.0771) for ANN, ICA–ANN and ABC–ANN, respectively. Moreover, a parametric analysis is accomplished on the proposed GP model to further verify its generalization capability. Hence, this GP-based model can be considered as a new applicable equation to accurately estimate the uniaxial compressive strength of granite block samples.

  相似文献   
5.

Air flow has significant effects on fuel consumption, performance, and comfort. Decreasing drag coefficient enhances fuel consumption and vehicle performance. Moreover, omitting or reducing the power of aerodynamic noise sources provides passengers comfort. In this paper, optimization of a hatchback rear end is conducted considering drag and aerodynamic noise objectives. To this end, five geometrical parameters of the hatchback rear end are chosen as design variables in two levels. Numerical simulation is applied to survey air flow features around the models in the wind tunnel. To reduce the number of runs, fraction factorial design algorithm is applied to generate layout of the simulations which decreased the number of case studies to half. Main and interaction effects of these factors on drag coefficient and acoustic power of the rear end source are derived using analysis of variance. Optimum level for each parameter is chosen considering simultaneous drag and noise goals. Finally, characteristics of air flow and acoustic power around optimum model are discussed.

  相似文献   
6.
Congestion is one of the most important challenges in optical networks. In a Passive Optical Network (PON), the Optical Line Terminal (OLT) is a bottleneck and congestion prone. In this paper, a framework is proposed with Forward Error Correction (FEC) at the IP layer combined with Weighted Round Robin (WRR) at the scheduling level to overcome packet-loss due to congestion in the OLT in order to achieve efficient video multicasting over PON. In the FEC scheme, Reed-Solomon (RS(n,k)) with erasure coding is used, where (nk) erroneous symbols per n symbol blocks can be corrected. In our framework, an Internet Protocol TeleVision (IPTV) service provider uses the mentioned RS coding and generates redundant packets from regular IPTV packets in such a way that an Optical Network Unit (ONU) can recover lost packets from received packets, thus resulting in a better video quality. Simulation results show that using the proposed framework, an ONU can recover many lost packets and achieve better video quality under different traffic loads for its users. For instance, the proposed method can reduce packet loss rate by almost 55% and 10% under traffic load 0.9, respectively, compared with the Round Robin (RR) and WRR methods under symmetric traffic load. When High Receivers Queue (HRQ) traffic (i.e., traffic received by many users) is twice Low Receivers Queue (LRQ) traffic (i.e., traffic received by a small number of users), this reduction is almost 86% and 30% under traffic load 0.9. Finally, when LRQ traffic is twice HRQ traffic, the reduction in packet loss rate is almost 70% and 91% at traffic load 0.5.  相似文献   
7.
Journal of Inorganic and Organometallic Polymers and Materials - The original version of this article unfortunately contained mistakes. In line 9 of the abstract, 5% should read as 2%. The...  相似文献   
8.
The improvement of safety and dependability in systems that physically interact with humans requires investigation with respect to the possible states of the user’s motion and an attempt to recognize these states. In this study, we propose a method for real-time visual state classification of a user with a walking support system. The visual features are extracted using principal component analysis and classification is performed by hidden Markov models, both for real-time fall detection (one-class classification) and real-time state recognition (multi-class classification). The algorithms are used in experiments with a passive-type walker robot called “RT Walker” equipped with servo brakes and a depth sensor (Microsoft Kinect). The experiments are performed with 10 subjects, including an experienced physiotherapist who can imitate the walking pattern of the elderly and people with disabilities. The results of the state classification can be used to improve fall-prevention control algorithms for walking support systems. The proposed method can also be used for other vision-based classification applications, which require real-time abnormality detection or state recognition.  相似文献   
9.
In the present paper, the dynamic facilities layout problem is studied in presence of ambiguity of information flow. Product demand (and consequently material flow) is defined as fuzzy numbers with different membership functions. The problem is modeled in fuzzy programming. Three models of expected value, chance-constrained programming and dependent-chance programming and two hybrid intelligent algorithms are then presented. At the end, efficiency of algorithms for solving fuzzy models of dynamic facilities layout is shown through some numerical examples.  相似文献   
10.
The purpose of this work was to study how mineral fillers would behave in a polypropylene (PP) matrix when PP modified with maleic anhydride (MA) and/or itaconic acid (IA) was used as a coupling agent in the preparation of mineral‐filled PP composites. The composites were characterized with tensile mechanical measurements and morphological analysis. The optimum amount of the coupling agent to be used to obtain composites with improved mechanical properties was established. The results indicated that these coupling agents enhanced the tensile strength of the composites significantly, and the extent of the coupling effect depended on the nature of the interface that formed. The incorporation of coupling agents enhanced the resistance to deformation of the composite. The behavior of IA‐modified PP as a coupling agent was similar to that of a commercial MA‐modified PP for the filled PP composites. Evidence of improved interfacial bonding was revealed by scanning electron microscopy studies, which examined the surfaces of fractured tensile test specimens; their microstructures confirmed the mechanical results with respect to the observed homogeneous or optimized dispersion of the mineral‐filler phase in these composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2343–2350, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号