首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
能源动力   1篇
无线电   16篇
  2008年   2篇
  2007年   3篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
Decision-feedback differential detection (DFDD) of differential phase-shift keying (DPSK) and differential unitary space-time modulation (DUST) in Rayleigh-fading channels exhibits significant performance improvement over standard single-symbol maximum-likelihood detection. However, knowledge of channel fading correlation and signal-to-noise ratio (SNR) is required at the receiver to compute the feedback coefficients used in DFDD. In this letter, we investigate the robustness of the DFDD to imperfect knowledge of the feedback coefficients by modeling the mismatch between estimated feedback coefficients and ideal coefficients in terms of mismatch between the estimated values of fading correlation and SNR and the true values. Under the assumption of a block-fading channel when nondiagonal DUST constellations are used and a continuous fading channel otherwise, we derive exact and Chernoff bound expressions for pair-wise word-error probability and then use them to approximate the bit-error rate (BER), finding close agreement with simulation results. The relationships between BER performance and various system parameters, e.g., DFDD length and Doppler mismatch, are also explored. Furthermore, the existence of an error floor in the BER-vs-SNR curve is investigated for the infinite-length DFDD. For the special case of Jakes' fading model, it is shown that the error floor can be removed completely even when the Doppler spread is over-estimated.  相似文献   
2.
The constant modulus (CM) criterion has become popular in the design of blind linear estimators of sub-Gaussian i.i.d. processes transmitted through unknown linear channels in the presence of unknown additive interference. The existence of multiple CM minima, however, makes it difficult for CM-minimizing schemes to generate estimates of the desired source (as opposed to an interferer) in multiuser environments. In this paper, we present three separate sufficient conditions under which gradient descent (GD) minimization of CM cost will locally converge to an estimator of the desired source at a particular delay. The sufficient conditions are expressed in terms of statistical properties of the initial estimates, specifically, CM cost, kurtosis, and signal-to-interference-plus-noise ratio (SINR). Implications on CM-GD initialization methods are also discussed  相似文献   
3.
In this correspondence, the performance of the automatic repeat request-dynamic decode and forward (ARQ-DDF) cooperation protocol is analyzed in two distinct scenarios. The first scenario is the multiple access relay channel where a single relay is dedicated to simultaneously help two multiple access users. For this setup, it is shown that the ARQ-DDF protocol achieves the channel's optimal diversity multiplexing tradeoff (DMT). The second scenario is the cooperative vector multiple access channel where two users cooperate in delivering their messages to a destination equipped with two receiving antennas. For this setup, a new variant of the ARQ-DDF protocol is developed where the two users are purposefully instructed not to cooperate in the first round of transmission. Lower and upper bounds on the achievable DMT are then derived. These bounds are shown to converge to the optimal tradeoff as the number of transmission rounds increases.  相似文献   
4.
Low-complexity equalization of OFDM in doubly selective channels   总被引:13,自引:0,他引:13  
Orthogonal frequency division multiplexing (OFDM) systems may experience significant inter-carrier interference (ICI) when used in time- and frequency-selective, or doubly selective, channels. In such cases, the classical symbol estimation schemes, e.g., minimum mean-squared error (MMSE) and zero-forcing (ZF) estimation, require matrix inversion that is prohibitively complex for large symbol lengths. An analysis of the ICI generation mechanism leads us to propose a novel two-stage equalizer whose complexity (apart from the FFT) is linear in the OFDM symbol length. The first stage applies optimal linear preprocessing to restrict ICI support, and the second stage uses iterative MMSE estimation to estimate finite-alphabet frequency-domain symbols. Simulation results indicate that our equalizer has significant performance and complexity advantages over the classical linear MMSE estimator in doubly selective channels.  相似文献   
5.
We consider the effect of mobility on a wideband direct sequence spread spectrum (DSSS) communication system, and study a scale-lag Rake receiver capable of leveraging the diversity that results from mobility. A wideband signal has a large bandwidth-to-center frequency ratio, such that the typical narrowband Doppler spread assumptions do not apply to mobile channels. Instead, we assume a more general temporal scaling phenomenon, i.e., a dilation of the transmitted signal's time support. Based on a uniform ring of scatterers model, we determine that the wideband scattering function, which quantifies the average scale spreading, has a "bathtub-shaped" scale profile. We compare the performances of a scale-lag Rake and a frequency-lag Rake, each capable of leveraging the diversity that results from mobility. Such analysis applies, for example, to ultra-wideband (UWB) radio frequency channels and underwater wideband acoustic channels.  相似文献   
6.
This correspondence shows the equivalence of three previously proposed reduced-rank detection schemes for direct-sequence code-division multiple-access (DS-CDMA) communication systems. The auxiliary vector filtering (AVF) algorithm is simplified through a key observation on the construction of the auxiliary vectors. After simplification, it is shown that the AVF algorithm is equivalent to the multistage Wiener filtering (MWF) algorithm of Honig and Goldstein (2002). Furthermore, these schemes can be shown to be equivalent to the multistage linear receiver scheme based on the Cayley-Hamilton (CH) theorem when the minimum mean-square error (MMSE) criterion is applied to the reduced dimensional space of the received signal.  相似文献   
7.
This paper considers affine cyclic-prefixed block-based pilot-aided transmission (PAT) over the single-antenna doubly selective channel, where the channel is assumed to obey a complex-exponential basis expansion model. First, a tight lower bound on the mean-squared error (MSE) of pilot-aided channel estimates is derived, along with necessary and sufficient conditions on the pilot/data pattern that achieves this bound. From these conditions, novel minimum-MSE (MMSE) PAT schemes are proposed and upper/lower bounds on their ergodic achievable rates are derived. A pilot/data power allocation technique is also developed. A high-SNR asymptotic analysis of the ergodic achievable rate of affine MMSE-PAT is then performed which suggests that the channel's spreading parameters should be taken into account when choosing among affine MMSE-PAT schemes. Specifically, we establish that multicarrier MMSE-PAT achieves higher rates than single-carrier MMSE-PAT when the channel's delay-spread dominates its Doppler-spread, and vice versa.  相似文献   
8.
Performance analysis of Godard-based blind channel identification   总被引:1,自引:0,他引:1  
We analyze a blind channel impulse response identification scheme based on the cross correlation of blind symbol estimates with the received signal. The symbol estimates specified are those minimizing the Godard (1980) (or constant modulus) criterion, for which mean-squared symbol estimation error bounds have been derived. We derive upper bounds for the average squared parameter estimation error (ASPE) of the blind identification scheme that depend on the mean-squared error of the Wiener equalizer, the kurtoses of the desired and interfering sources, and the channel impulse response. The effects of finite data length and stochastic gradient equalizer design on ASPE are also investigated. All results are derived in a general multiuser vector-channel context  相似文献   
9.
For communication over doubly dispersive channels, we consider the design of multicarrier modulation (MCM) schemes based on time-frequency shifts of prototype pulses. We consider the case where the receiver knows the channel state and the transmitter knows the channel statistics (e.g., delay spread and Doppler spread) but not the channel state. Previous work has examined MCM pulses designed for suppression of inter-symbol/inter-carrier interference (ISI/ICI) subject to orthogonal or biorthogonal constraints. In doubly dispersive channels, however, complete suppression of ISI/ICI is impossible, and the ISI/ICI pattern generated by these (bi)orthogonal schemes can be difficult to equalize, especially when operating at high bandwidth efficiency. We propose a different approach to MCM pulse design, whereby a limited expanse of ISI/ICI is tolerated in modulation/demodulation and treated near-optimally by a downstream equalizer. Specifically, we propose MCM pulse designs that maximize a signal-to-interference-plus-noise ratio (SINR) which suppresses ISI/ICI outside a target pattern. In addition, we propose two low-complexity turbo equalizers, based on minimum mean-squared error and maximum likelihood criteria, respectively, that leverage the structure of the target ISI/ICI pattern. The resulting system exhibits an excellent combination of low complexity, low bit-error rate, and high spectral efficiency.  相似文献   
10.
Efficiency based optimal control of Kaplan hydrogenerators   总被引:1,自引:0,他引:1  
This paper investigates an optimal strategy for controlling the speed response of Kaplan hydrogenerating systems to decreases in load. Typically, primary control gates restrict and redirect water through the turbine to stabilize and transfer the system to operating point demand. The adjustable turbine blade angle is used to return to maximum operating efficiency at the new load level. The over-speed reduction is limited by the conduit's ability to withstand the over-pressure caused by the flow restriction at the turbine. A control scheme using gates and blades simultaneously and independently is developed. Simulation results show that the proposed scheme outperforms the traditional gate-dominant control in minimizing turbine over-speed and speed settling time under prescribed load change and conduit pressure limits. However, in its present form, the design is found to be more sensitive to system nonlinearities than its conventional counterpart  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号