首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   335篇
  免费   24篇
电工技术   3篇
综合类   3篇
化学工业   138篇
金属工艺   3篇
机械仪表   5篇
建筑科学   3篇
能源动力   27篇
轻工业   68篇
水利工程   4篇
石油天然气   3篇
无线电   12篇
一般工业技术   34篇
冶金工业   4篇
自动化技术   52篇
  2024年   3篇
  2023年   7篇
  2022年   28篇
  2021年   31篇
  2020年   26篇
  2019年   30篇
  2018年   21篇
  2017年   31篇
  2016年   20篇
  2015年   14篇
  2014年   21篇
  2013年   36篇
  2012年   25篇
  2011年   27篇
  2010年   6篇
  2009年   5篇
  2008年   9篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
排序方式: 共有359条查询结果,搜索用时 15 毫秒
1.
The objectives of this article is to propose a new drying model for the second falling rate period known as the variable diffusion controlled period that follows after the first falling rate period and to propose a new method to determine the second critical moisture content that separates these two periods. Experimental work on paddy drying at minimum fluidization velocity was carried out in a rapid bin dryer. The effects of operating temperatures (60-120°C) and bed depths (2-6 cm) on the paddy drying characteristics were investigated. It was found that the normalized drying rate of paddy was proportional to the normalized moisture content in the first falling rate period but in the second falling rate period, the normalized drying rate of the material varies exponentially with the normalized moisture content. The different relationship between the normalized drying rate and the normalized moisture content in the first and second falling rate periods indicate that two different mechanism of moisture transport are at work. The new exponential model of the second falling rate period and the linear model of the first falling rate period were found to fit the experimental data very well. Derivation from variable diffusion equation shows that the linear model is the result of constant diffusion coefficient whereas the new exponential model is the result of linear diffusion coefficient. This also implies that the first falling rate period is a constant diffusion controlled period and the second falling rate period is a variable diffusion controlled period. In addition, drying kinetics data of a drying process that fits the exponential model over a very slow drying period will show that the drying process is under the effect of a linear diffusion coefficient. It was also found that the proposed new method to determine the second critical moisture content that distinguishes between the first and second falling rate periods by using a sudden change in the value of the drying rate gradient to a much lower value at that point is more rigorous and yet simpler than the method of determining the specific location of the receding drying boundary since it is based on the behavior of the actual drying kinetic data.  相似文献   
2.
Binary image representation is essential format for document analysis. In general, different available binarization techniques are implemented for different types of binarization problems. The majority of binarization techniques are complex and are compounded from filters and existing operations. However, the few simple thresholding methods available cannot be applied to many binarization problems. In this paper, we propose a local binarization method based on a simple, novel thresholding method with dynamic and flexible windows. The proposed method is tested on selected samples called the DIBCO 2009 benchmark dataset using specialized evaluation techniques for binarization processes. To evaluate the performance of our proposed method, we compared it with the Niblack, Sauvola and NICK methods. The results of the experiments show that the proposed method adapts well to all types of binarization challenges, can deal with higher numbers of binarization problems and boosts the overall performance of the binarization.  相似文献   
3.
Rapid industrialization and urbanization has led to increasing input of chemical contaminants into the aquatic environment of Malaysia. Despite the threat civilization poses to the biota, there are still very few relevant studies on ecotoxicological testing of river ecosystems. To overcome this knowledge gap, we examined lethal and genotoxic effects of sediments from different rivers of the northern Malaysia against Chironomus kiiensis, a group well represented in the aquatic fauna of this region. We exposed the larvae to sediments from Selama River (SR), Permatang Rawa River (PRR) and Kilang Ubi River (KUR) at various durations (0, 6, 12, 24 and 48 h). The larval mortality was monitored, whereas DNA damage in survivors' cells was determined using the comet assay. Pollution level indexed by the amounts of heavy metals and other organic contaminants in the sediment showed progressive increases from SR to PRR to KUR. Highly polluted sediments (PRR to KUR) were detrimental to C. kiiensis larvae, most of which did not survive following exposure for long periods. DNA analyses revealed greater damages in nuclei derived from larvae maintained on polluted sediments, in particular, those from KUR. The effects on the genomic material of C. kiiensis larvae occurred in a time‐dependent manner, with damage level increasing as exposure time progressed. Our results highlight the genotoxic properties of polluted sediments. More importantly, this study showed that C. kiiensis larvae could respond to different levels of pollution with respect to exposure time. It is concluded that C. kiiensis larvae is a potential candidate for river ecotoxicological monitoring. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
5.
6.
Journal of Mechanical Science and Technology - Facility layout planning (FLP) has an important role in manufacturing industries. There are few approaches to solve FLP such as procedural,...  相似文献   
7.
Polyethersulfone (PES) hollow fiber membranes were fabricated via the dry‐wet phase inversion spinning technique, aiming to produce an asymmetric, micro porous ultrafiltration hollow‐fiber specifically for hemodialysis membrane. The objective of this study is to investigate the effect of spinning conditions on the morphological and permeation properties of the fabricated membrane. Among the parameters that were studied in this work are air gap distance, dope extrusion rate, bore fluid flow rate, and the take‐up speed. The contact angle was measured to determine the hydrophilicity of the fibers. Membrane with sufficient hydrophilicity properties is desired for hemodialysis application to avoid fouling and increase its biocompatibility. The influences of the hollow fiber's morphology (i.e., diameter and wall thickness) on the performance of the membranes were evaluated by pure water flux and BSA rejection. The experimental results showed that the dope extrusion rate to bore fluid flow rate ratio should be maintained at 1:1 ratio to produce a perfectly rounded asymmetric hollow fiber membrane. Moreover, the flux of the hollow fiber spun at higher air gap distance had better flux than the one spun at lower air gap distance. Furthermore, spinning asymmetric hollow fiber membranes at high air gap distance helps to produce a thin and porous skin layer, leading to a better flux but a relatively low percentage of rejection for BSA separation. Findings from this study would serve as primary data which will be a useful guide for fabricating a high performance hemodialysis hollow fiber membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43633.  相似文献   
8.
Dopamine (3,4-dihydroxylphenyl ethylamine) is the most significant neurotransmitter in the human nervous system. Abnormal dopamine levels cause fatal neurological disorders, and thus measuring dopamine level in actual samples is important. Although electrochemical methods have been developed for detecting dopamine with high accuracy, certain substances (e.g., ascorbic acid) in actual samples often interfere with electrochemical dopamine detection. We developed tyrosinase-based dopamine biosensor with high sensitivity and selectivity. An electrochemically pretreated tyrosinase/multi-walled carbon nanotube-modified glassy carbon electrode (tyrosinase/MWNT/GCE) was prepared as an amperometric biosensor for selective dopamine detection. For optimizing the biosensor performance, pH, temperature, and scan rate were investigated. The electrochemically pretreated tyrosinase/MWNT/GCE exhibited not only the highest sensitivity (1,323 mAM?1 cm?2) compared to previously reported tyrosinase-based dopamine sensors, but also good long-term stability, retaining 90% of initial activity after 30 days. Additionally, ascorbic acid, a major interfering substances, was not oxidized at the potential used to detect dopamine oxidation, and the interfering effect of 4mM ascorbic acid was negligible when monitoring 1mM dopamine. Consequently, the electrochemically pretreated tyrosinase/MWNT/GCE is applicable for highly selective and sensitive dopamine detection in actual samples including interfering substances, thereby extending the practical use to monitor and diagnose neurological disorders.  相似文献   
9.
We report on the morphology evolution during heating and melting of lamellar poly(isoprene)-block-poly(ferrocenyldimethylsilane) (PI76-b-PFDMS76) raft crystals deposited at the native oxide surface of silicon (SiO2) or at a highly ordered pyrolytic graphite (HOPG) surface, studied by in situ temperature controlled atomic force microscopy. Crystals deposited on hydrophilic SiO2 surfaces revealed an irreversible decrease in length at temperatures of up to tens of degrees above their expected melting temperature, while maintaining their platelet-like structure. Crystals deposited on hydrophobic HOPG surfaces initially decreased in length below their expected melting temperature, while at 120 °C and above a typical molten morphology was observed. In addition, the irreversible formation of a PI76-b-PFDMS76 wetting layer around the crystals was observed upon increasing the temperature. These observations in the morphological behavior upon heating emphasize the role of interfacial energy between a surface deposited block copolymer based macromolecular nanostructure and its supporting substrate.  相似文献   
10.
Hydrogen production via water electrolysis was studied under the effect of magnetic and optical field. A diode solid state laser at blue, green and red were utilized as optical field source. Magnetic bar was employed as external magnetic field. The green laser has shown a greatest effect in hydrogen production due to its non-absorbance properties in the water. Thus its intensity of electrical field is high enough to dissociation of hydronium and hydroxide ions during orientation toward polarization of water. The potential to break the autoprotolysis and generate the auto-ionization is the mechanism of optical field to reveal the hydrogen production in water electrolysis. The magnetic field effect is more dominant to enhance the hydrogen production. The diamagnetic property of water has repelled the present of magnetic in water. Consequently the water splitting occurs due to the repulsive force induced by the external magnetic field. The magnetic distributed more homogenous in the water to involve more density of water molecule. As a result hydrogen production due to magnetic field is higher in comparison to optical field. However the combination both fields have generated superior effect whereby the hydrogen yields nine times higher in comparison to conventional water electrolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号