首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
能源动力   1篇
一般工业技术   1篇
  2017年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Effect of Sc on Precipitation Hardening of AlSi6Mg Alloy   总被引:1,自引:0,他引:1  
The effect of Sc on precipitation hardening of AlSi6Mg was studied.Zr was previously reported that it increased the effectiveness of Sc in wrought aluminum in many areas so Zr was also used together with Sc in this study. Different levels of Sc and Zr additions were added to AlSi6Mg before casting in the permanent mold.The samples were precipitation hardened at different aging temperatures and for various aging time before testing for tensile strength and hardness.It was found that Sc addition into Al6SiMg can change its response to age hardening.Additions of Sc and Sc with Zr increased both yield strength and hardness for both aging temperatures.In addition,Sc was found to modify eutectic Si to obtain fibrous morphology.This effect of Sc on eutectic silicon modification has never been reported before.  相似文献   
2.
This paper uses the survey data on household electricity demand from five districts of Vientiane, Lao PDR, for the demand projection up to 2030 using the end-use model. The scenario analysis is used to verify the potential of an energy-saving program by alternating selected appliances with more energy-efficient ones following the labelling standard of Thailand. The demographic structure of electrified households and the energy efficiency of electric appliances are considered as the dominant factors affecting electricity demand. Under the base-case scenario, the total electricity demand of Vientiane increased from 593?GWh in 2013 to 965?GWh in 2030. In the energy efficiency scenario, it is revealed that the appliance standard enhancement program can save total electricity demand in 2030 by 147?GWh (?15.2%), where 117?GWh (?12.1%) of which is contributed by the air conditioner and 30?GWh (?3.1%) by the lighting equipment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号