首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
能源动力   3篇
  2012年   1篇
  2010年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.
Solar energy is the most promising source of clean, renewable energy and it has the greatest potential of any power source to solve the world's energy problems. However, the problem, is how best to harness this vast amount of solar energy. Nevertheless, even if highly efficient Concentrating Solar Power (CSP) could be made cheaply, there would be considerable change in solar power. This technology is expected to be more efficient and to achieve a manufacturing cost of less than $1/W near future. This paper reviews and elaborates the methodology utilized to design and fabricate the solar dish concentrator and outlines the parameters that can be used to increase the efficiency of solar fraction in parabolic dish concentrator under wet climate environment in Malaysia. The study finally provides ideas to the continually increasing ability of these technologies to concentrate and harness solar energy for electricity production and thus eliminate the growing concern over climate change and how it will hurt the region's environment, human health and economy.  相似文献   
3.
Renewable energy generation is becoming more prevalent on today's electric grid. The challenges of increasing the percentage of renewable energy will be dealing with the intermittent nature of renewable sources. Three experimental models with various geometrical sizes and diameter of about 0.5 m of solar dish concentrators are used to analyze the effect of geometry on a solar irradiation and temperature and in maximising the solar fraction under Malaysian environment. These models are used to analyze the performance of parabolic concentrating collector's parameters such as reflector materials, aperture diameter, depth of concentrator, size of focal point and temperature at the focal point with different solar irradiations to increase the thermal efficiency. Thermal efficiency of the different dimensional dish concentrators are analysed using an absorber placed at the focal point. There is a significant variation in the efficiency of the concentrator with different reflective materials used. The efficiencies are calculated and results are conclusive. The 3 M Silverlux aluminium films are much efficient than stainless steel and increasing the area of the concentrator gives much more considerable variation in the results i.e. efficiency when comparing with the base. Overall, the efficiency of D1 and D2 is over 60% compared to D3, which is 50% in many cases (by neglecting the losses).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号