首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   21篇
电工技术   4篇
化学工业   64篇
金属工艺   1篇
机械仪表   6篇
建筑科学   6篇
矿业工程   1篇
能源动力   12篇
轻工业   24篇
水利工程   1篇
无线电   27篇
一般工业技术   64篇
冶金工业   24篇
原子能技术   2篇
自动化技术   56篇
  2024年   1篇
  2023年   5篇
  2022年   23篇
  2021年   18篇
  2020年   22篇
  2019年   15篇
  2018年   26篇
  2017年   16篇
  2016年   20篇
  2015年   17篇
  2014年   8篇
  2013年   14篇
  2012年   9篇
  2011年   12篇
  2010年   7篇
  2009年   10篇
  2008年   6篇
  2007年   7篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   2篇
  1972年   1篇
  1969年   1篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
1.
A series of polyurethane (PU) elastomers was prepared by the reaction of poly(?‐caprolactone) and 4,4′‐diphenylmethane diisocyanate, which was extended with a series of chain extenders (CEs) having 2–10 methylene units in their structure. The completion of the reaction was confirmed by Fourier transform infrared spectroscopy. The chemical structures of the synthesized PU samples were characterized with Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy, and the thermal properties were determined by thermogravimetric analysis, DSC, and dynamic mechanical thermal analysis techniques. The mechanical properties were also studied and are discussed. The thermogravimetric analysis and DSC analysis showed that CE length had a considerable effect on the thermal properties of the prepared samples. The dynamic mechanical thermal analysis and damping peaks were also affected by the number of methylene units in the CE length. The elastomer extended with 1,2‐ethane diol exhibited optimum thermal properties, whereas the elastomer based on 1,10‐decane diol displayed the worst thermal properties. Tensile strength and elongation at break decreased with increasing CE length, whereas hardness showed the opposite trend. The glass‐transition temperature moved toward lower temperatures with increasing CE length. The decrease in the glass‐transition temperature and tensile properties were interpreted in terms of decreasing hard segments and increasing chain flexibility. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
2.
ZeTek Power recently introduced mass manufacturable and cost effective alkaline fuel cells on the market. Today's research is focused on further improvement both in terms of performance increase and cost reduction. This research is classically performed using small (4 cm2) experimental electrodes in the half-cell configuration. This allows the primary electrochemical losses in an anode or cathode to be determined independently. Additional performance losses occur when one integrates large electrodes into a module of 24 cells and in a stack comprised of many modules. By comparing the performance of half-cell experiments to that of modules, these losses can be distinguished and addressed. The information thus obtained, both for the small electrodes and in up-scaling is vital if one is to identify the key areas in which improvement is possible and where to focus future research. Furthermore, the identification of the losses in a module and system allows us to predict the final performance from half-cell measurements of a new laboratory scale experimental electrode.  相似文献   
3.
Dynamic mechanical and longitudinal sonic velocity measurements have been made on a series of semi-1-IPNs in which the network component is a polyurethane and the linear constituent a copolymer of methyl acrylate and ethyl acrylate. Dynamic mechanical analysis reveals phase separation. The shifting of the polyurethane glass transition in both the tan δ? and the E″–temperature plots indicates that some mixing occurs. The longitudinal sonic velocity results indicate that the polyurethane is present as a continuous phase in all the materials investigated.  相似文献   
4.
Qamer Zia 《Polymer》2007,48(12):3504-3511
The process of isothermal annealing of nodular monoclinic crystals of isotactic polypropylene (iPP) was analyzed by atomic force microscopy (AFM) and temperature-modulated differential scanning calorimetry (TMDSC). Initially nodular and mesomorphic domains were obtained by controlled melt-crystallization at high cooling rate. Subsequent heating triggers transition from mesomorphic to monoclinic structure, and melting of unstable nodules. Annealing allows re-crystallization, which is recognized by enlargement of domains from initially about 20 nm to about 35 and 55 nm after annealing at 393 and 433 K, respectively. Furthermore, the re-crystallization process is connected with a slight change of the aspect ratio of crystals. The isothermal re-crystallization of the liquid is superimposed by aggregation of crystals, to yield blocky, and string-like objects. The direct analysis of structure on isothermal annealing by AFM is for the first time compared with the isothermal decrease of the apparent specific heat capacity, or change of enthalpy, monitored by TMDSC. The apparent specific heat capacity decreases during annealing with an identical non-linear time dependence as the directly observed growth of the crystal size. Analysis of the annealing processes at different temperatures yields proportionality between the increase of the crystal size and the reduction of the apparent specific heat capacity.  相似文献   
5.
In this work, the authors report a facile low‐temperature wet‐chemical route to prepare morphology‐tailored hierarchical structures (HS) of copper oxide. The preparation of copper oxide collides was carried out using varying concentrations of copper acetate and a reducing agent at a constant temperature of 50°C. The prepared HS of CuO were characterised by powdered X‐rays diffraction that indicates phase pure having monoclinic structures. The morphology was further confirmed by field‐emission scanning electron microscope. It reveals a difference in shape and size of copper oxide HS by changing the concentration of reactants. In order to evaluate the effect of H2 O2 on CuO NPs, the prepared CuO are modified by treatment with H2 O2. In general trend, CuOH2 O2 collide showed enhanced protein kinase inhibition, antibacterial (maximum zone 16.34 mm against Staphylococcus aureus) and antifungal activities in comparison to unmodified CuO collides. These results reveal that CuO HS exhibit antimicrobial properties and can be used as a potential candidate in pharmaceutical industries.Inspec keywords: molecular biophysics, antibacterial activity, X‐ray diffraction, microorganisms, copper compounds, nanofabrication, nanoparticles, narrow band gap semiconductors, field emission scanning electron microscopy, enzymes, nanomedicine, particle size, semiconductor growthOther keywords: unmodified CuO collides, low‐temperature synthesis, morphology‐tailored hierarchical structures, copper acetate, reducing agent, monoclinic structures, copper oxide HS, CuO NPs, Staphylococcus aureus, biological activity, copper oxide, powdered X‐ray diffraction, field‐emission scanning electron microscopy, facile low‐temperature wet‐chemical method, protein kinase inhibition, antibacterial activity, antifungal activity, antimicrobial properties, pharmaceutical industries, temperature 50.0 degC, CuO  相似文献   
6.
Liu  Daobin  Wu  Chuanqiang  Chen  Shuangming  Ding  Shiqing  Xie  Yaofeng  Wang  Changda  Wang  Tao  Haleem  Yasir A.  ur Rehman  Zia  Sang  Yuan  Liu  Qin  Zheng  Xusheng  Wang  Yu  Ge  Binghui  Xu  Hangxun  Song  Li 《Nano Research》2018,11(4):2217-2228
Nano Research - Atomically dispersed catalysts have attracted attention in energy conversion applications because their efficiency and chemoselectivity for special catalysis are superior to those...  相似文献   
7.
This article presents spatial and temporal variations of planetary boundary layer (PBL) sulphur dioxide (SO2) over megacity Lahore and adjoining region, a typical representative area in the Indo-Gangetic Basin (IGB) largely influenced by transported volcanic SO2 from Africa, Middle East, and southern Europe, by using data retrieved from satellite-based Ozone Monitoring Instrument (OMI) during October 2004–September 2015. We find a positive trend of 2.4% per year (slope 0.01 ± 0.005 with y-intercept 0.35 ± 0.03 Dobson Unit (DU), correlation coefficient r = 0.55 and 2-tailed p-value at 0.1) of OMI-SO2 column with the average value of 0.4 ± 0.05 DU. Strong seasonality of OMI-SO2 column is observed over the region linked with local meteorology, patterns of anthropogenic emissions, crop residue burning, and vegetation cover. There exists a seasonal high value in winter 0.56 ± 0.24 DU with a peak in December 0.67 ± 0.26 DU. The seasonal lowest value is observed to be 0.29 ± 0.11 DU in wet summer with minimum value in July 0.25 ± 0.06 DU. High growth rates of OMI-SO2 column over the study region have been observed in January, June, October, and December ranging from 5.7% to 11.6% per year. Satellite data show elevated OMI-SO2 columns in 2007, 2008, 2011, and 2012 largely contributed by trans-boundary volcanic SO2. A detailed analysis of volcanic SO2 transported from Africa and Middle East (Jabal Al-Tair, Dalaffilla, and Nabro volcanoes) over the study area is presented. Air mass trajectories suggest the presence of long-range transported volcanic SO2 at high altitude levels over Lahore and IGB region during the volcanic episodes. The SO2 enhancements in PBL during winter season are generally due to significant vertical downdraft of high-altitude volcanic SO2. For the first time, we present significant influence of volcanic SO2 from southern Europe (Mt. Etna volcano) reaching over the study area. Daily mean OMI-SO2 levels up to 21.4, 10.0, 5.6, and 2.4 DU have been noticed due to the eruptions from Dalaffilla, Mt. Etna, Nabro, and Jabal Al-Tair volcanoes, respectively.  相似文献   
8.
In several multitarget tracking applications, a target may return more than one measurement per target and interacting targets may return multiple merged measurements between targets. Existing algorithms for tracking and data association, initially applied to radar tracking, do not adequately address these types of measurements. Here, we introduce a probabilistic model for interacting targets that addresses both types of measurements simultaneously. We provide an algorithm for approximate inference in this model using a Markov chain Monte Carlo (MCMC)-based auxiliary variable particle filter. We Rao-Blackwellize the Markov chain to eliminate sampling over the continuous state space of the targets. A major contribution of this work is the use of sparse least squares updating and downdating techniques, which significantly reduce the computational cost per iteration of the Markov chain. Also, when combined with a simple heuristic, they enable the algorithm to correctly focus computation on interacting targets. We include experimental results on a challenging simulation sequence. We test the accuracy of the algorithm using two sensor modalities, video, and laser range data. We also show the algorithm exhibits real time performance on a conventional PC  相似文献   
9.
Spatial channel models are often proposed for modeling the angular aspects of mobile radio channel in picocell, microcell, and macrocellular environments. These models are validated through comparison with available measurement results. The comparisons are usually based on the fitness of their pdfs of angle of arrival to the histogram of occurrences of the signals over an angular span, given in the measurement data. This paper presents a comparison of the notable scattering models with various spatial channel measurements. The paper suggests criteria for the comparative analysis of the previously proposed spatial channel models and measurements on the basis of their fading statistics. Quantitative analysis of the considered models and the field measurements is also presented using multipath shape factors i.e. angle spread, the angular constriction and direction of maximum fading. Based on the obtained shape factors, fading statistics like level crossing rates, average fade duration, auto-covariance and coherence distance are evaluated. Effect of increasing Doppler spread on the level crossing rates and average fade duration is also elaborated in detail.  相似文献   
10.
The main objective of this study was to investigate the combined effect of microwave (MW) treatment (2450 MHz for 120 s), ultrasonication (US) (24 KHz, 20 °C for 20 min) and combined treatment (MW-US) on the quality and stability of sugarcane juice (SCJ) during 21 days of storage at 4 °C. The effect of the treatments and storage time on physicochemical, bioactive compounds (total phenolic, flavonoids and ascorbic acid content) and microbial analysis of SCJ. No significant (< 0.05) changes were observed in °Brix, while there was an increase in pH and a decrease in titratable acidity in all treatments. Compared to US and MW, MW-US treatments was more effective in preserving colour attributes, total phenolic and flavonoids contents, ascorbic acid and antioxidant capacities of the SCJ during storage. The results regarding the microbial count indicate that more microbial safety and longer shelf life was achieved by MW-US. MW-US treatment is an effective technology for improving the safety and shelf life of SCJ by minimising quality changes, retaining bioactive compounds and reducing microbial growth during storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号