首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   1篇
能源动力   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
A shock tube technique was employed to study the fast pyrolysis of cellulose with methane under conditions of high temperature, high heating rate, short reaction time, and rapid quenching. The effects of temperature, methane atmosphere, and reaction time are investigated. Experiments were carried out at temperatures between 700 and 2200°C in 1% methane (diluted in argon), and comparisons in the yields of major gas products are made with the results obtained in pure argon atmosphere. The total gas yield decreased about 25–30% in methane. The principal gas products—carbon monoxide, carbon dioxide, and acetylene, except ethylene—were significantly decreased in methane as compared to the yields in pure argon. An increase of about 25% in ethylene yield in methane over argon was observed. The onset of the decomposition of cellulose and the evolution of major pyrolysis products were changed with the reaction times, which also affected the amplitude and the distribution of the pyrolysis products. © 1994 John Wiley & Sons, Inc.  相似文献   
2.
A shock tube technique was employed to study the thermal decomposition of cellulose in an inert argon gas under the conditions of high temperature, high heating rate, and short reaction times. The influence of temperature and reaction times on product yields and their distribution were investigated. A clean, tar and char free gas consisting mainly of CO, CO2, C2H2, C2H4 and CH4 were produced throughout the course of this investigation. A mass conversion of cellulose to gas exceeding 90 wt% has been realized between the temperatures 700 and 2200°C for the reaction times examined. Carbon monoxide is the major product and attains a yield in excess of 65 wt% for temperatures above 1300°C. Global kinetic parameters for the decomposition of cellulose and its principal gas products were obtained by fitting the experimental data to a single, first order kinetic model. The energy of activation for the decomposition of cellulose was found to be 130.5 kJ/mol. The material balances made for the total mass, carbon and oxygen are good.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号