首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   6篇
化学工业   29篇
机械仪表   3篇
建筑科学   1篇
矿业工程   4篇
能源动力   2篇
轻工业   13篇
水利工程   2篇
无线电   9篇
一般工业技术   8篇
冶金工业   8篇
自动化技术   7篇
  2022年   5篇
  2021年   8篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   8篇
  2011年   2篇
  2010年   5篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1969年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
1.
2.
A new class of Hermite methods for solving nonlinear conservation laws is presented. While preserving the high order spatial accuracy for smooth solutions in the existing Hermite methods, the new methods come with better stability properties. Artificial viscosity in the form of the entropy viscosity method is added to capture shocks.  相似文献   
3.
Atomically dispersed transition metals anchored on N-doped carbon have been successfully developed as promising electrocatalysts for acidic oxygen reduction reaction (ORR). Nonetheless, how to introduce and construct single-atomic active sites is still a big challenge. Herein, a novel concave dodecahedron catalyst of N-doped carbon (FeCuNC) with well confined atomically dispersed bivalent Fe sites was facilely developed via a Cu-assisted induced strategy. The obtained catalyst delivered outstanding ORR performance in 0.5 M H2SO4 media with a half-wave potential (E1/2) of 0.82 V (vs reversible hydrogen electrode, RHE), stemming from the highly active bivalent Fe-Nx sites with sufficient exposure and accessibility guaranteed by the high specific surface area and curved surface. This work provides a simple but efficient metal-assisted induced strategy to tune the configurations of atomically dispersed active sites as well as microscopy structures of carbon matrix to develop promising PGM-free catalysts for proton exchange membrane fuel cell (PEMFC) applications.  相似文献   
4.
Ion implantation has the advantage of being a unidirectional doping technique. Unlike gaseous diffusion, this characteristic highlights strong possibilities to simplify solar cell process flows. The use of ion implantation doping for n‐type PERT bifacial solar cells is a promising process, but mainly if it goes with a unique co‐annealing step to activate both dopants and to grow a SiO2 passivation layer. To develop this process and our SONIA cells, we studied the impact of the annealing temperature and that of the passivation layers on the electrical quality of the implanted B‐emitter and P‐BSF. A high annealing temperature (above 1000 °C) was necessary to fully activate the boron atoms and to anneal the implantation damages. Low J0BSF (BSF contribution to the saturation current density) of 180 fA/cm2 was reached at this high temperature with the best SiO2 passivation layer. An average efficiency of 19.7% was reached using this simplified process flow (“co‐anneal process”) on large area (239 cm2) Cz solar cells. The efficiency was limited by a low FF, probably due to contaminations by metallization pastes. Improved performances were achieved in the case of a “separated anneals” process where the P‐BSF is activated at a lower temperature range. An average efficiency of 20.2% was obtained in this case, with a 20.3% certified cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
BACKGROUND: Much attention has been given to applying ionic liquids (ILs) as an alternative pretreatment method for lignocellulosic biomass. This study aims to select the most suitable type of IL for pretreating sugarcane bagasse (SCB). The potential of ILs for pretreatment was evaluated and compared with conventional pretreatment media, acids and alkalis. The performance of the pretreatment media was evaluated based on the amount of reducing sugar produced from enzymatic saccharification, the energy requirement, and changes in the chemical structure and crystallinity index of the pretreated bagasse. RESULTS: 1‐ethyl‐3‐methylimidazolium acetate [EMIM]oAc was selected as the most suitable IL for SCB pretreatment. The optimum yields of reducing sugar obtained from [EMIM]oAc‐, alkali‐, and acid‐pretreated SCB were 69.5%, 92.8% and 41.3%, respectively. Although a lower yield of reducing sugar was obtained, [EMIM]oAc pretreatment required the least energy to pretreat 1 kg of SCB. Moreover, the percentage of SCB loss during [EMIM]oAc pretreatment was the lowest. [EMIM]oAc‐pretreated SCB also had the lowest crystallinity index (CI) with the most amorphous structure. CONCLUSION: [EMIM]oAc appears to be another option for pretreating SCB, and other issues such as the recyclability of [EMIM]oAc is worth investigating. Copyright © 2011 Society of Chemical Industry  相似文献   
6.
A CVD process with a high density of CNTs has been developed on doped silicon material thanks to plasma pre-treatment of the catalyst. With this process small diameter double and triple wall CNTs with an average diameter of 3.8 nm have been grown. The density of the best materials on blanket substrate is larger than 1012 cm? 2. These materials have been successfully integrated in via holes with a diameter ranging between 1 µm and 0.3 µm with an equivalent density. In 140 nm hole diameter large 70 nm bundle formations have been observed. In these bundles a density of CNT walls close to 1013 cm? 2 has been estimated.  相似文献   
7.
P2X7 receptors (P2X7) are cationic channels involved in many diseases. Following their activation by extracellular ATP, distinct signaling pathways are triggered, which lead to various physiological responses such as the secretion of pro-inflammatory cytokines or the modulation of cell death. P2X7 also exhibit unique behaviors, such as “macropore” formation, which corresponds to enhanced large molecule cell membrane permeability and current facilitation, which is caused by prolonged activation. These two phenomena have often been confounded but, thus far, no clear mechanisms have been resolved. Here, by combining different approaches including whole-cell and single-channel recordings, pharmacological and biochemical assays, CRISPR/Cas9 technology and cell imaging, we provide evidence that current facilitation and macropore formation involve functional complexes comprised of P2X7 and TMEM16, a family of Ca2+-activated ion channel/scramblases. We found that current facilitation results in an increase of functional complex-embedded P2X7 open probability, a result that is recapitulated by plasma membrane cholesterol depletion. We further show that macropore formation entails two distinct large molecule permeation components, one of which requires functional complexes featuring TMEM16F subtype, the other likely being direct permeation through the P2X7 pore itself. Such functional complexes can be considered to represent a regulatory hub that may orchestrate distinct P2X7 functionalities.  相似文献   
8.
Genomic instability is generally considered as a hallmark of tumorigenesis and a prerequisite condition for malignant transformation. Aluminium salts are suspected environmental carcinogens that transform mammary epithelial cells in vitro through unknown mechanisms. We report here that long-term culture in the presence of aluminium chloride (AlCl3) enables HC11 normal mouse mammary epithelial cells to form tumours and metastases when injected into the syngeneic and immunocompetent BALB/cByJ strain. We demonstrate that AlCl3 rapidly increases chromosomal structural abnormalities in mammary epithelial cells, while we failed to detect direct modulation of specific mRNA pathways. Our observations provide evidence that clastogenic activity—a well-recognized inducer of genomic instability—might account in part for the transforming abilities of aluminium in mammary epithelial cells.  相似文献   
9.
The PIWI-interacting RNA (piRNA) pathway provides an RNA interference (RNAi) mechanism known from Drosophila studies to maintain the integrity of the germline genome by silencing transposable elements (TE). Aedes aegypti mosquitoes, which are the key vectors of several arthropod-borne viruses, exhibit an expanded repertoire of Piwi proteins involved in the piRNA pathway, suggesting functional divergence. Here, we investigate RNA-binding dynamics and subcellular localization of A. aegypti Piwi4 (AePiwi4), a Piwi protein involved in antiviral immunity and embryonic development, to better understand its function. We found that AePiwi4 PAZ (Piwi/Argonaute/Zwille), the domain that binds the 3′ ends of piRNAs, bound to mature (3′ 2′ O-methylated) and unmethylated RNAs with similar micromolar affinities (KD = 1.7 ± 0.8 μM and KD of 5.0 ± 2.2 μM, respectively; p = 0.05) in a sequence independent manner. Through site-directed mutagenesis studies, we identified highly conserved residues involved in RNA binding and found that subtle changes in the amino acids flanking the binding pocket across PAZ proteins have significant impacts on binding behaviors, likely by impacting the protein secondary structure. We also analyzed AePiwi4 subcellular localization in mosquito tissues. We found that the protein is both cytoplasmic and nuclear, and we identified an AePiwi4 nuclear localization signal (NLS) in the N-terminal region of the protein. Taken together, these studies provide insights on the dynamic role of AePiwi4 in RNAi and pave the way for future studies aimed at understanding Piwi interactions with diverse RNA populations.  相似文献   
10.
Loo AH  Bonanni A  Pumera M 《Nanoscale》2012,4(1):143-147
Highly sensitive biosensors are of high importance to the biomedical field. Graphene represents a promising transducing platform for construction of biosensors. Here for the first time we compare the biosensing performance of a wide set of graphenes prepared by different methods. In this work, we present a simple and label-free electrochemical impedimetric aptasensor for thrombin based on chemically modified graphene (CMG) platforms such as graphite oxide (GPO), graphene oxide (GO), thermally reduced graphene oxide (TR-GO) and electrochemically reduced graphene oxide (ER-GO). Disposable screen-printed electrodes were first modified with chemically modified graphene (CMG) materials and used to immobilize a DNA aptamer which is specific to thrombin. The basis of detection relies on the changes in impedance spectra of redox probe after the binding of thrombin to the aptamer. It was discovered that graphene oxide (GO) is the most suitable material to be used as compared to the other three CMG materials. Furthermore, the optimum concentration of aptamer to be immobilized onto the modified electrode surface was determined to be 10 μM and the linear detection range of thrombin was 10-50 nM. Lastly, the aptasensor was found to demonstrate selectivity for thrombin. Such simply fabricated graphene oxide aptasensor shows high promise for clinical diagnosis of biomarkers and point-of-care analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号