首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
轻工业   1篇
冶金工业   2篇
  1996年   1篇
  1994年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Mismatch repair systems correct replication- and recombination-associated mispaired bases and influence the stability of simple repeats. These systems thus serve multiple roles in maintaining genetic stability in eukaryotes, and human mismatch repair defects have been associated with hereditary predisposition to cancer. In prokaryotes, mismatch repair systems also have been shown to limit recombination between diverged (homologous) sequences. We have developed a unique intron-based assay system to examine the effects of yeast mismatch repair genes (PMS1, MSH2, and MSH3) on crossovers between homologous sequences. We find that the apparent antirecombination effects of mismatch repair proteins in mitosis are related to the degree of substrate divergence. Defects in mismatch repair can elevate homologous recombination between 91% homologous substrates as much as 100-fold while having only modest effects on recombination between 77% homologous substrates. These observations have implications for genome stability and general mechanisms of recombination in eukaryotes.  相似文献   
2.
A 3·6 kb DNA fragment from Saccharomyces douglasii, containing the ARG4 gene, has been cloned, sequenced and compared to the corresponding region from Saccharomyces cerevisiae. The organization of this region is identical in both yeasts. It contains besides the ARG4 gene, another complete open reading frame (ORF) (YSD83) and a third incomplete one (DED81). The ARG4 and the YSD83 coding regions differ from their S. cerevisiae homologs by 8.1% and 12·5%, respectively, of base substitutions. The encoded proteins have evolved differently: amino acid replacements are significantly less frequent in Arg4 (2·8%) than in Ysc83 (12·4%) and most of the changes in Arg4 are conservative, which is not the case for Ysc83. The non-coding regions are less conserved, with small AT-rich insertions/deletions and 20% base substitutions. However, the level of divergence is smaller in the aligned sequences of these regions than in silent sites of the ORFs, probably revealing a higher degree of constraints. The Gcn4 binding site and the region where meiotic double-strand breaks occur, are fully conserved. The data confirm that these two yeasts are evolutionarily closely related and that comparisons of their sequences might reveal conserved protein and DNA domains not expected to be found in sequence comparisons between more diverged organisms.  相似文献   
3.
A 3.6 kb DNA fragment from Saccharomyces douglasii, containing the ARG4 gene, has been cloned, sequenced and compared to the corresponding region from Saccharomyces cerevisiae. The organization of this region is identical in both yeasts. It contains besides the ARG4 gene, another complete open reading frame (ORF) (YSD83) and a third incomplete one (DED81). The ARG4 and the YSD83 coding regions differ from their S. cerevisiae homologs by 8.1% and 12.5%, respectively, of base substitutions. The encoded proteins have evolved differently: amino acid replacements are significantly less frequent in Arg4 (2.8%) than in Ysc83 (12.4%) and most of the changes in Arg4 are conservative, which is not the case for Ysc83. The non-coding regions are less conserved, with small AT-rich insertions/deletions and 20% base substitutions. However, the level of divergence is smaller in the aligned sequences of these regions than in silent sites of the ORFs, probably revealing a higher degree of constraints. The Gcn4 binding site and the region where meiotic double-strand breaks occur, are fully conserved. The data confirm that these two yeasts are evolutionarily closely related and that comparisons of their sequences might reveal conserved protein and DNA domains not expected to be found in sequence comparisons between more diverged organisms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号