首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4095篇
  免费   299篇
  国内免费   2篇
电工技术   50篇
综合类   3篇
化学工业   1103篇
金属工艺   143篇
机械仪表   109篇
建筑科学   124篇
矿业工程   19篇
能源动力   147篇
轻工业   696篇
水利工程   32篇
石油天然气   34篇
无线电   221篇
一般工业技术   917篇
冶金工业   114篇
原子能技术   51篇
自动化技术   633篇
  2023年   47篇
  2022年   65篇
  2021年   161篇
  2020年   108篇
  2019年   131篇
  2018年   200篇
  2017年   192篇
  2016年   194篇
  2015年   180篇
  2014年   227篇
  2013年   432篇
  2012年   258篇
  2011年   321篇
  2010年   295篇
  2009年   218篇
  2008年   171篇
  2007年   126篇
  2006年   93篇
  2005年   47篇
  2004年   51篇
  2003年   51篇
  2002年   55篇
  2001年   33篇
  2000年   52篇
  1999年   28篇
  1998年   38篇
  1997年   33篇
  1996年   30篇
  1995年   24篇
  1994年   24篇
  1993年   31篇
  1992年   31篇
  1991年   15篇
  1990年   13篇
  1989年   14篇
  1988年   15篇
  1986年   10篇
  1985年   19篇
  1984年   27篇
  1983年   20篇
  1982年   24篇
  1981年   37篇
  1980年   27篇
  1979年   23篇
  1978年   23篇
  1977年   23篇
  1976年   36篇
  1975年   25篇
  1974年   18篇
  1973年   25篇
排序方式: 共有4396条查询结果,搜索用时 15 毫秒
1.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
2.
The aim of this work was to investigate the physical and mechanical performance of architectural polyester (PES)–poly(vinyl chloride) (PVC) membranes exposed to different artificial aging conditions. Two commercially available architectural membranes were chosen as research objects. The durability of the PES/PVC fabrics was evaluated by the loss in mechanical performance, scanning electron microscopy, and X-ray diffraction analysis in order to understand the effect of the degradation agents on the surface of the membranes. The mechanical performance of the PES/PVC membranes was unchanged. Scanning electron microscopy images of the tested materials showed initial cracks after aging. The X-ray fluorescence analysis showed that at the time of aging, the amount of Cl and Si decreased slightly, while Ti decreased by half, and Ca by volume increased twice. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47523.  相似文献   
3.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
4.
Deshmukh  P.  Sar  S. K.  Smječanin  N.  Nuhanović  M.  Lalwani  R. 《Radiochemistry》2022,64(4):532-542
Radiochemistry - Magnetically modified waste bark of the Aegle marmelos tree was prepared by using green synthesis method and was used in a batch system for U(VI) removal from aqueous solution. The...  相似文献   
5.
This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.  相似文献   
6.
To quantify the evacuation process, evacuation practitioners use engineering egress data describing the occupant movement characteristics. These data are typically based to young and fit populations. However, the movement abilities of occupants who might be involved in evacuations are becoming more variable—with the building populations of today typically including increasing numbers of individuals: with impairments or who are otherwise elderly or generally less mobile. Thus, there will be an increasing proportion of building occupants with reduced ability to egress. For safe evacuation, there is therefore a need to provide valid engineering egress data considering pedestrians with disabilities. Gwynne and Boyce recently compiled a series of data sets related to the evacuation process to support practitioner activities in the chapter Engineering Data in the SFPE Handbook of Fire Protection Engineering. This paper supplements these data sets by providing information on and presenting data obtained from additional research related to the premovement and horizontal movement of participants with physical‐, cognitive‐, or age‐related disabilities. The aim is to provide an overview of currently available data sets related to, and key factors affecting the egress performance of, mixed ability populations which could be used to guide fire safety engineering decisions in the context of building design.  相似文献   
7.
The fission yeast Schizosaccharomyces pombe is an important model organism for the study of fundamental questions in eukaryotic cell and molecular biology. A plethora of cellular processes are membrane associated and/or dependent on the proper functioning of cellular membranes. Phospholipids are not only the basic building blocks of cellular membranes; they also serve as precursors to numerous signaling molecules. In this review, we describe the biosynthetic pathways leading to major S. pombe phospholipids, how these pathways are regulated, and what is known about degradation and turnover of fission yeast phospholipids. This review also addresses the synthesis, regulation and the role of water-soluble phospholipid precursors. The last chapter of the review is devoted to the use of S. pombe for the biotechnological production of value-added lipid molecules.  相似文献   
8.
Proton-detected 100 kHz magic-angle-spinning (MAS) solid-state NMR is an emerging analysis method for proteins with only hundreds of microgram quantities, and thus allows structural investigation of eukaryotic membrane proteins. This is the case for the cell-free synthesized hepatitis C virus (HCV) nonstructural membrane protein 4B (NS4B). We demonstrate NS4B sample optimization using fast reconstitution schemes that enable lipid-environment screening directly by NMR. 2D spectra and relaxation properties guide the choice of the best sample preparation to record 2D 1H-detected 1H,15N and 3D 1H,13C,15N correlation experiments with linewidths and sensitivity suitable to initiate sequential assignments. Amino-acid-selectively labeled NS4B can be readily obtained using cell-free synthesis, opening the door to combinatorial labeling approaches which should enable structural studies.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号