首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   807篇
  免费   53篇
  国内免费   1篇
电工技术   11篇
综合类   1篇
化学工业   179篇
金属工艺   26篇
机械仪表   18篇
建筑科学   16篇
能源动力   57篇
轻工业   62篇
水利工程   11篇
石油天然气   4篇
无线电   98篇
一般工业技术   145篇
冶金工业   55篇
原子能技术   2篇
自动化技术   176篇
  2024年   3篇
  2023年   24篇
  2022年   44篇
  2021年   52篇
  2020年   33篇
  2019年   36篇
  2018年   54篇
  2017年   43篇
  2016年   41篇
  2015年   26篇
  2014年   40篇
  2013年   61篇
  2012年   50篇
  2011年   55篇
  2010年   43篇
  2009年   33篇
  2008年   26篇
  2007年   28篇
  2006年   19篇
  2005年   17篇
  2004年   13篇
  2003年   11篇
  2002年   12篇
  2001年   5篇
  2000年   6篇
  1999年   8篇
  1998年   11篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1985年   1篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1969年   1篇
  1965年   1篇
  1963年   2篇
  1890年   1篇
排序方式: 共有861条查询结果,搜索用时 796 毫秒
1.

Surface integrity characterization of manufactured component is very important as it significantly affects the in-service performance of the component. Till now, surface integrity was evaluated using conventional measurement technique like microhardness tester, X-ray diffraction, optical microscopy and surface roughness tester. But, this technique being laboratory based cannot be used for in-service monitoring of the surface integrity. The present study focuses on the characterization of surface integrity upon electric discharge machined sample using non-destructive magnetic Barkhausen noise technique. Electric discharge machining was performed in die-sinking mode on die steel using copper–tungsten electrode (negative polarity). Experiment was performed by selecting different levels of peak current, gap voltage and pulse on time. Surface integrity characteristics like microhardness change, residual stress, microstructural alteration and surface roughness were analysed using microhardness tester, X-ray diffraction, optical microscopy and surface roughness tester, respectively, and were then correlated with magnetic parameter like root mean square value and peak value obtained from Barkhausen noise signal. The results show a good correlation between magnetic parameter (RMS and Peak value) of Barkhausen noise with the microhardness and surface roughness of the machined sample.

  相似文献   
2.
3.
The present study was aimed to utilize low‐cost alumina (Al2O3) nanoparticles for improving the heat transfer behavior in an intercooler of two‐stage air compressor. Experimental investigation was carried out with three different volume concentrations of 0.5%, 0.75%, and 1.0% Al2O3/water nanofluids to assess the performance of the intercooler, that is, counterflow heat exchanger at different loads. Thermal properties such as thermal conductivity and overall heat transfer coefficient of nanofluid increased substantially with increasing concentration of Al2O3 nanoparticles. Specific heat capacity of nanofluids were lower than base water. The intercooler performance parameters such as effectiveness and efficiency improved appreciably with the employment of nanofluid. The efficiency increased by about 6.1% with maximum concentration of nanofluid, that is, 1% at 3‐bar compressor load. It is concluded from the study that high concentration of Al2O3 nanoparticles dispersion in water would offer better heat transfer performance of the intercooler.  相似文献   
4.
Energy management for commercial servers   总被引:1,自引:0,他引:1  
Servers: high-end, multiprocessor systems running commercial workloads, have typically included extensive cooling systems and resided in custom-built rooms for high-power delivery. Recently, as transistor density and demand for computing resources have rapidly increased, even these high-end systems face energy-use constraints. Commercial-server energy management now focuses on conserving power in the memory and microprocessor subsystems. Because their workloads are typically structured as multiple application programs, system-wide approaches are more applicable to multiprocessor environments in commercial servers than techniques that primarily apply to single-application environments, such as those based on compiler optimizations.  相似文献   
5.
In the present study, Karso watershed of Hazaribagh, Jharkhand State, India was divided into 200 × 200 grid cells and average annual sediment yields were estimated for each grid cell of the watershed to identify the critical erosion prone areas of watershed for prioritization purpose. Average annual sediment yield data on grid basis was estimated using Universal Soil Loss Equation (USLE). In general, a major limitation in the use of hydrological models has been their inability to handle the large amounts of input data that describe the heterogeneity of the natural system. Remote sensing (RS) technology provides the vital spatial and temporal information on some of these parameters. A recent and emerging technology represented by Geographic Information System (GIS) was used as the tool to generate, manipulate and spatially organize disparate data for sediment yield modeling. Thus, the Arc Info 7.2 GIS software and RS (ERDAS IMAGINE 8.4 image processing software) provided spatial input data to the erosion model, while the USLE was used to predict the spatial distribution of the sediment yield on grid basis. The deviation of estimated sediment yield from the observed values in the range of 1.37 to 13.85 percent indicates accurate estimation of sediment yield from the watershed.  相似文献   
6.
7.
This study assesses snow response in the Assiniboine-Red River basin, located in the Lake Winnipeg watershed, due to anthropogenic climate change. We use a process-based distributed snow model driven by an ensemble of eight statistically downscaled global climate models (GCMs) to project future changes under policy-relevant global mean temperature (GMT) increases of 1.0 °C to 3.0 °C above the pre-industrial period. Results indicate that basin scale seasonal warmings generally exceed the GMT increases, with greater warming in winter months. The majority of GCMs project wetter winters and springs, and drier summers, while autumn could become either drier or wetter. An analysis of snow water equivalent (SWE) responses under GMT changes reveal higher correlations of snow cover duration (SCD), snowmelt rate, maximum SWE (SWEmax) and timing of SWEmax with winter and spring temperatures compared to precipitation, implying that these variables are predominantly temperature controlled. Consequently, under the GMT increases from 1.0 °C to 3.0 °C, the basin will experience successively shorter SCD, slower snowmelt, smaller monthly SWE and SWEmax, earlier SWEmax, and a transition from snow-dominated to rain-snow hybrid regime. Further, while the winter precipitation increases for some GCMs compensate the temperature-driven changes in SWE, the increases for most GCMs occur as rainfall, thus limiting the positive contribution to snow storage. Overall, this study provides a detailed diagnosis of the snow regime changes under the policy-relevant GMT changes, and a basis for further investigations on water quantity and quality changes.  相似文献   
8.
Gupta  Ashok Kumar  Raman  Ashish  Kumar  Naveen 《SILICON》2021,13(12):4553-4564
Silicon - This paper examines, an electrostatically configured Nano-Tube Tunnel Field-Effect Transistor (ED-NTTFET). During the fabrication process, different charges such as fixed charge, oxide...  相似文献   
9.
Lithium chloride was added to systematically alter the phase separation behavior, and hence, the nature of urea phase connectivity, in a series of plaques based on molded flexible polyurethane foam formulations. The plaques prepared were found to possess varied levels of urea phase connectivity that was examined at different length scales using several characterization techniques. SAXS, TEM, and t‐AFM were used to show that addition of LiCl systematically reduced the formation of the urea aggregate structures typically observed in flexible polyurethane foam formulations and thus led to a loss in urea phase connectivity at the macrolevel. SAXS, DSC, and DMA revealed that formulations with and without LiCl exhibited similar interdomain spacings and soft segment glass transitions, suggesting that incorporation of LiCl did not prevent the plaques from undergoing partial microphase separation. WAXS demonstrated that addition of LiCl led to a loss in the local ordering of the hard segments within the microdomains, i.e., it led to a reduction of microlevel connectivity or the regularity in segmental packing of the urea phase. High‐magnification t‐AFM images showed that increasing the LiCl content dispersed the urea component more homogeneously and in a more uniform manner in the polyol matrix, and thus altered the connectivity of the urea phase at the microdomain level. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2956–2967, 2002  相似文献   
10.
Axial plasma spray is one of the thermal spray techniques to deposit multifunctional advanced coatings. The present work explores the use of this process to deposit thin, continuous, and adherent Ca5 (PO4)3OH (hydroxyapatite, HAp) coatings and characterize its microstructure, phases, hardness and adhesion strength. Three different suspension-deposited HAp coatings were investigated and compared with powder-deposited HAp coating on a Ti6Al4V substrate. The effect of mean solute particle size and solid-loading in the suspension has been explored on the evolution of microstructure, phase content and mechanical properties of axial suspension plasma sprayed (ASPS) coatings. Phase-characterization has shown retention of hydroxyapatite phase and coating crystallinity in the deposited coatings, whereas the adhesion strength of the HAp coating decreased from ~40 MPa to ~13 MPa when bioglass was added to the feedstock material. The lower solid load content and lower mean solute particle size in the suspension were found to be beneficial in achieving porous, rougher, and well-adhering coatings. This work concludes that ASPS can potentially deposit thin HAp coatings (< 50 μm) with high adhesion strength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号