首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
化学工业   5篇
轻工业   7篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2002年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
N‐halamine modification of materials enables the development of antimicrobial materials whose activity can be regenerated after exposure to halogenated sanitizers. Surface and bulk modification of polymers by N‐halamines has shown great success, however, modification of inorganic substrates (e.g., stainless steel) remains an area of research need. Herein, we report the covalent surface modification of stainless steel to possess rechargeably antimicrobial N‐halamine moieties. Multilayers of branched polyethyleneimine and poly(acrylic acid) were immobilized onto the surface of stainless steel and the number of N‐halamines available to complex chlorine was quantified. Samples were characterized through contact angle, Fourier transform infrared spectroscopy, ellipsometry, dye assay for amine quantification, and X‐ray photoelectron spectroscopy. Increasing the number of multilayers from one to six increased the number of N‐halamines available to complex chlorine from 0.30 ± 0.5 to 36.81 ± 5.0 nmol cm?2. XPS and FTIR confirmed successful covalent layer‐by‐layer deposition of the N‐halamine multilayers. The reported layer‐by‐layer deposition technique resulted in a greater than seven‐fold increase of available N‐halamine compared to prior reports of N‐halamine surface modifications. The N‐halamine modified steel demonstrated antimicrobial activity (99.7% reduction) against the pathogen Listeria monocytogenes. Such surface modified stainless steel with increased N‐halamine functionality, and therefore potential for rechargeable antimicrobial activity, supports efforts to reduce cross‐contamination by pathogenic organisms in the food and biomedical industries. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
2.
3.
4.
The release kinetics of nisin from poly(butylene adipate-co-terephthalate) (PBAT) to distilled water was studied at of 5.6, 22 and 40 °C. The release kinetics of nisin from PBAT film was described using Fick’s second law of diffusion, partition coefficient, and Weibull model. The diffusion coefficients (D) determined were 0.93, 2.29, and 5.78 × 10−10 cm2/s at 5.6, 22, and 40 °C, respectively. The partition coefficients (K) calculated were 0.84, 3.89, and 5.2 × 103 at 5.6, 22, and 40 °C, respectively. The nisin release data at selected temperatures were fitted with the Weibull model (R2 > 0.97) with b and n values ranging from 0.02 to 0.98 and from 0.28 to 0.45, respectively. The temperature dependence of D, K, and Weibull model parameter b was modeled using the Arrhenius equation giving values of activation energy (Ea) of 38.3 kJ mol−1 (for D), 38.5 kJ mol−1 (for K), and 79.5 kJ mol−1 (for b).  相似文献   
5.
Sulfonated polyphenylsulfone porous asymmetric membranes, S‐PPSU with different sulfonation degrees, 21, 33, 50 wt %, were prepared by phase inversion. Two different coagulation baths were explored for asymmetric membrane preparation: acetone/isopropanol and acetic acid (AA)‐NaHCO3/isopropanol. The latter bath allows better morphology control for the nucleation and pore formation of the membrane. Scanning electron microscopy of membranes shows that pore interconnectivity is improved, when the mixture of AA‐NaHCO3/isopropanol was used for asymmetric S‐PPSU ultrafiltration membranes preparation. S‐PPSU asymmetric membranes show an increasing hydrophilicity with increasing sulfonation degree. Asymmetric membrane antifouling properties improve as the concentration of sulfonic groups increases in the membrane showing twice the flux recovery ratio and lower BSA protein absorption in static and dynamic flux tests. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44502.  相似文献   
6.
7.
ABSTRACT: Biodegradable poly(butylene adipate-co-terephthalate) (PBAT) films incorporated with nisin were prepared with concentrations of 0, 1000, 3000, and 5000 international units per cm2 (IU/cm2). All the films with nisin inhibited Listeria innocua, and generated inhibition zones with diameters ranging from 14 to 17 mm. The water vapor permeability and oxygen permeability after the addition of nisin ranged from 3.05 to 3.61 × 1011 g m m−2 s−1 Pa−1 and from 4.80 × 107 to 11.26 × 107 mL·m·m−2·d−1·Pa−1, respectively. The elongation at break (ɛb) was not altered by the incorporation of nisin (P > 0.05). Significant effect was found for the elastic modulus (E) and the tensile strength (σs) (P < 0.05). The glass transition and melting temperatures with the presence of nisin ranged from −36.3 to −36.6 °C and from 122.5 to 124.2 °C, respectively. The thermal transition parameters such as the crystallization and melting enthalpies and crystallization temperature were influenced significantly (P < 0.05) by incorporation of nisin into films. The X-ray diffraction patterns exhibited decreasing levels of intensity (counts) as the concentration of nisin increased in a range of 2θ from 8° to 35°. Formation of holes and pores was observed from the environmental scanning electron microscopy images in the films containing nisin, suggesting interaction between PBAT and nisin.  相似文献   
8.
Results from the grafting of poly(acrylic acid) (PAA) onto cellulosic microfibers and continuous cellulose filaments are presented. The grafting of PAA onto cellulosic fibers offers the possibility of developing enhanced ion exchange and fluid absorbency on the fibers. The grafting of PAA was carried out with a two‐step procedure. First, vinyl‐terminated ethoxy silane was deposited on the surface of the fiber. This was followed by a grafting polymerization reaction in aqueous media of acrylic acid with different concentrations of potassium persulfate (KPS), which acted as the initiator. The percentage of grafting increased with increasing KPS concentration and reached a maximum value at a concentration of about 0.4 wt % with respect to the weight of the fiber. The grafted copolymer was characterized by Fourier transform infrared spectroscopy. Strong evidence that the grafting reaction was successful was given by the presence of a band, with a maximum at 1732 cm?1, that was characteristic of carbonyl group absorption and was not initially present in the cellulosic fibers. The water absorption of the cellulosic microfibers grafted with PAA was three times greater than the water absorption of the nongrafted microfibers. The mechanical properties of continuous cellulose filaments did not change drastically with PAA grafting. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 386–393, 2002  相似文献   
9.
ABSTRACT:  Biopolymer films were developed from apple peels of apple process co-products and their physical properties were determined. Apple peel-based films with glycerol (23%, 33%, and 44%[w/w, dry basis]) were prepared using high-pressure homogenization (HPH) at different levels of pressure (138, 172, and 207 MPa). An evaluation of the rheological properties (elastic modulus [ G '], viscous modulus [ G "], and viscosity) of the film-forming solutions was performed. For the apple peel films, the water sorption isotherms, the kinetics of water absorption, the water vapor permeability (WVP), the oxygen permeability (OP), and the tensile properties were determined. The  G ' and viscosity of the film-forming solutions decreased significantly with increasing processing pressure ( P  < 0.05). However, no difference was observed in  G " values at different homogenization pressures ( P  > 0.05). The viscosity decreased from 644 to 468 kPa·s as the pressure increased from 138 to 207 MPa at 90 °C. The monolayer water content of the apple peel films decreased with increasing content of glycerol from 23% to 33%. Further increase in glycerol content did not change the monolayer water content. The water diffusion coefficient of the films was highest at the intermediate level of glycerol content. The barrier properties (WVP and OP) of the films increased with increasing level of glycerol, while processing pressure did not influence the gas barrier properties. The films prepared at 207 MPa were less stiff and strong, but more stretchable than those prepared at 138 and 172 MPa.  相似文献   
10.
Two aromatic polyesters and three copolyesters were synthesized by interfacial polycondensation using 4,4′‐(hexafluoroisopropylidene)diphenol (HFD) and two phthalic dichlorides, isophthaloyl dichloride (ISO) and 5‐tertbutyl‐isophthaloyl dichloride (TERT). The polymers obtained were soluble in common chlorinated solvents. The properties of these aromatic polyesters and copolyesters were characterized by FTIR, density, inherent viscosity, TGA, and DSC. Thermal properties such as glass transition temperature, onset of decomposition, and thermal stability of the homopolymer, poly(hexafluoroisopropilydene)5‐tertbutylisophthalate (HFD/TERT), were higher than those of homopolymer poly(hexafluoroisopropilydene)isophthalate (HFD/ISO). Thermal properties of the copolyesters HFD/TERT‐co‐HFD/ISO depend upon the amounts of the tertbutyl group HFD/TERT, present in the copolymer. Gas permeability coefficients of all polyarylates were measured at 35°C. The effect of different concentrations of the bulky tertbutyl group at the 5‐position in the isophthaloyl moiety on He, O2, N2, and CO2 permeability, diffusion, and solubility coefficients were determined. Gas permeability and diffusivity increase as the concentration of TERT moiety increases in the copolymers. The results indicate that polymers containing the largest amounts of the bulky lateral tertbutyl group show the highest gas permeability. The increment in gas permeability and diffusivity produces a decrease in selectivity, which is attributed to the effect of the large pendant tertbutyl groups in the aromatic polyesters and copolyesters, which decrease the chain packing efficiency and induce a larger fractional free volume. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2207–2216, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号