首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
电工技术   1篇
化学工业   6篇
轻工业   6篇
无线电   1篇
一般工业技术   6篇
冶金工业   5篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  2002年   1篇
  2000年   1篇
  1998年   2篇
  1995年   1篇
  1976年   1篇
排序方式: 共有26条查询结果,搜索用时 156 毫秒
1.
This study aims to describe the procedures and practices used in local production of raw milk butter. The demand for local products is increasing; hence, there is a need to describe the practices used in the artisanal production of raw milk butter. Therefore, a survey of 147 raw milk butter producers was carried out. The results from the survey indicate that there is not one single way to produce butter at artisanal level. In terms of maturation, six temperature sequences were distinguished. Attention is required at every step of production starting from breeding.  相似文献   
2.
The frequency and severity of extreme climatic conditions such as drought, salinity, cold, and heat are increasing due to climate change. Moreover, in the field, plants are affected by multiple abiotic stresses simultaneously or sequentially. Thus, it is imperative to compare the effects of stress combinations on crop plants relative to individual stresses. This study investigated the differential regulation of physio-biochemical and metabolomics parameters in peanut (Arachis hypogaea L.) under individual (salt, drought, cold, and heat) and combined stress treatments using multivariate correlation analysis. The results showed that combined heat, salt, and drought stress compounds the stress effect of individual stresses. Combined stresses that included heat had the highest electrolyte leakage and lowest relative water content. Lipid peroxidation and chlorophyll contents did not significantly change under combined stresses. Biochemical parameters, such as free amino acids, polyphenol, starch, and sugars, significantly changed under combined stresses compared to individual stresses. Free amino acids increased under combined stresses that included heat; starch, sugars, and polyphenols increased under combined stresses that included drought; proline concentration increased under combined stresses that included salt. Metabolomics data that were obtained under different individual and combined stresses can be used to identify molecular phenotypes that are involved in the acclimation response of plants under changing abiotic stress conditions. Peanut metabolomics identified 160 metabolites, including amino acids, sugars, sugar alcohols, organic acids, fatty acids, sugar acids, and other organic compounds. Pathway enrichment analysis revealed that abiotic stresses significantly affected amino acid, amino sugar, and sugar metabolism. The stress treatments affected the metabolites that were associated with the tricarboxylic acid (TCA) and urea cycles and associated amino acid biosynthesis pathway intermediates. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and heatmap analysis identified potential marker metabolites (pinitol, malic acid, and xylopyranose) that were associated with abiotic stress combinations, which could be used in breeding efforts to develop peanut cultivars that are resilient to climate change. The study will also facilitate researchers to explore different stress indicators to identify resistant cultivars for future crop improvement programs.  相似文献   
3.
The poly(vinyl chloride) (PVC) industry plays an important role in today's total plastics industry. The major volume of PVC is used as soft and plasticized PVC. PVC applications consume approximately 80% of the total production of plasticizers. Most of the common plasticizers are aromatic esters of phthalic acid. In the majority of countries, phthalate plasticizers are banned due to their carcinogenic properties. The concern raised about toxicity led to a large demand for bio‐based non‐toxic plasticizers. Hence, there is an increasing interest in replacing the phthalate plasticizers with those produced from simple bio‐based materials. Dehydrated castor oil fatty acid (DCOFA) is a renewable resource which can be esterified and used as an environment friendly plasticizer for PVC. Benzyl ester (BE) was prepared by reacting DCOFA with benzyl alcohol in the presence of catalyst at 170–180 °C. Esterification was further confirmed by acid value, hydroxyl number, 1H NMR and Fourier transform IR spectroscopy. The modified plasticizer was used in various proportions as a co‐plasticizer in PVC for partial replacement of dioctyl phthalate (DOP). With an increase in the proportion of BE in PVC samples, a good plasticizing performance was observed. The incorporation of BE also resulted in a reduction in viscosity and viscosity pick‐up and improved mechanical, exudation, thermal degradation and chemical resistance properties. The presence of BE showed a reduction in the whiteness index due to presence of conjugated double bonds in the structure. The results of DSC, XRD and Shore hardness studies showed no significant variation in properties compared with those of DOP‐plasticized sheets and thus we can conclude that BE can be used as a co‐plasticizer in PVC. © 2013 Society of Chemical Industry  相似文献   
4.
5.
1. Bovine aortic endothelial (BAE) cells contain two co-existing receptors for extracellular ATP, the P2Y and P2U-purinoceptors. Here we have determined whether the proposed P2X-purinoceptor antagonist, pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS) could distinguish between these two receptor subtypes. 2. Cells labelled with myo-[2-3H]-inositol were stimulated with increasing concentrations of either the P2Y-agonist, 2MeSATP, or the P2U-agonist, UTP in the absence or presence of 30 microM PPADS. The accumulation of total [3H]-inositol (poly)phosphates mediated by 2MeSATP was markedly attenuated by PPADS, whereas the response to UTP was not significantly affected. 3. Stimulation of BAE cells with increasing concentrations of ATP showed a reduced response in the presence of 10 microM PPADS, but this effect of the antagonist was not significant. By contrast, inhibition of the response to ADP was profound and highly significant. 4. These observations show that PPADS is not a selective P2X-purinoceptor antagonist, but is able to distinguish between P2Y- and P2YU-purinoceptors in BAE cells, and indicate that this compound may provide a useful tool in the study of multiple subtypes of P2-purinoceptors. Furthermore the results are consistent with the hypothesis that ATP interacts with both receptor subtypes, but that the action of ADP is primarily at the P2Y-purinoceptor in these endothelial cells.  相似文献   
6.
7.
Skeletal class II and III malocclusions are craniofacial disorders that negatively impact people’s quality of life worldwide. Unfortunately, the growth patterns of skeletal malocclusions and their clinical correction prognoses are difficult to predict largely due to lack of knowledge of their precise etiology. Inspired by the strong inheritance pattern of a specific type of skeletal malocclusion, previous genome-wide association studies (GWAS) were reanalyzed, resulting in the identification of 19 skeletal class II malocclusion-associated and 53 skeletal class III malocclusion-associated genes. Functional enrichment of these genes created a signal pathway atlas in which most of the genes were associated with bone and cartilage growth and development, as expected, while some were characterized by functions related to skeletal muscle maturation and construction. Interestingly, several genes and enriched pathways are involved in both skeletal class II and III malocclusions, indicating the key regulatory effects of these genes and pathways in craniofacial development. There is no doubt that further investigation is necessary to validate these recognized genes’ and pathways’ specific function(s) related to maxillary and mandibular development. In summary, this systematic review provides initial insight on developing novel gene-based treatment strategies for skeletal malocclusions and paves the path for precision medicine where dental care providers can make an accurate prediction of the craniofacial growth of an individual patient based on his/her genetic profile.  相似文献   
8.
OBJECTIVE: To assess the morphologic characteristics of the foveal abnormality in juvenile X-linked retinoschisis using the scanning retinal thickness analyzer (RTA). This characteristic foveal abnormality is present in 83% to 100% of patients with X-linked retinoschisis and has not been demonstrated histopathologically. METHODS: The RTA is a noncontact imaging device. The RTA scans an obliquely oriented slit laser beam across the macula to obtain a series of optical cross sections, which are digitized. PARTICIPANTS: The RTA was used to examine 7 eyes of 5 patients with X-linked retinoschisis. RESULTS: The RTA demonstrated foveal schisis in all eyes examined. In 2 eyes of 2 patients, a single schisis cavity, with an inner leaf in a dome-shaped configuration, was present. In 4 eyes of 3 patients, a single schisis cavity containing fine strands was present. Some of these strands partially, and others completely, bridged the cavity. In 1 eye of 1 patient, 2 separate schisis cavities with bridging strands were present in the fovea. CONCLUSIONS: Scanning RTA is a noninvasive imaging modality capable of producing optical cross sections that demonstrate the extent and structural details of the foveal schisis in X-linked retinoschisis. Scanning RTA seems to be effective in the detection, characterization, and quantification of foveal schisis.  相似文献   
9.
In this study, copper nanoparticles (Cu NPs) were synthesised by using diethylenetriamine as a protective agent in chemical reduction method. The obtained nanoparticles were characterised by various spectroscopic techniques like powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR), UV–visible spectroscopy, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal analysis (TG/DTA). The structure and composition were estimated by PXRD, FTIR, EDS, UV–visible and TG/DTA techniques, while particles size and morphology behaviours were investigated by SEM and TEM instrumentation. A noteworthy, average particle size of nanoparticles was found around 40 nm with spherical shapes. Furthermore, the applications part of NPs were studied as a catalyst for one-pot solvent-free green synthesis of 3,4-dihydropyrano[c]chromenes from different aromatic aldehydes, malonitrile and 4-hydroxycoumarin by stirring at 80 °C. Moreover, the antibacterial properties of NPs were assessed in vitro against human bacterial pathogen such as Staphylococcus aureus, Escherichia coli, Klebsiella sp. and Pseudomonas aruginosa using agar well diffusion method. Gram positive bacteria S. aureus (18 mm) exhibited a maximum zone of inhibition at 60 µg/ml of Cu NPs. Nonetheless, antibacterial activities of Cu NPs (10–100 µg) were compared with four well-known antibiotics likes amikacin (30 mcg), ciprofloxacin (5 mcg), gentamicin (5 mcg) and norfloxacin (10 mcg). This study indicates that Cu NPs exhibited a strong antibacterial activity against all the test pathogens even at lower concentration.  相似文献   
10.
Mechanisms of hydrogen peroxide decomposition in soils   总被引:2,自引:0,他引:2  
The rates and mechanisms of hydrogen peroxide (H2O2) decomposition were examined in a series of soil suspensions at H2O2 concentrations comparable to those found in rainwaters. The formation of hydroxyl radical (OH) as a possible decomposition intermediate was investigated using a new, highly sensitive method. In surface soils with higher organic matter or manganese content, H2O2 usually decayed rapidly, with disproportionation to water and dioxygen dominating the decomposition, whereas the formation of the hydroxyl radical (OH) represented <10% of the total H2O2 decomposed. In contrast, for soils with lower organic matter content, H2O2 usually decayed much more slowly, but OH was a major product of the H2O2 decomposed. The decomposition was principally associated with soil particles, not the soil supernatant. Different sterilization techniques indicated that decomposition of H2O2 was at least partly due to biological activity. Because the loss of H2O2 can largely be accommodated by the production of O2 and OH within these soils, our results suggest that disproportionation through a catalase-type mechanism and the production of OH through a Haber-Weiss mechanism represent the principal routes through which H2O2 is lost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号