首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
化学工业   2篇
轻工业   11篇
一般工业技术   1篇
  2022年   1篇
  2021年   3篇
  2018年   1篇
  2015年   1篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
3.
Zinc fortification of whole rice grain through parboiling process   总被引:2,自引:0,他引:2  
The present study evaluated the effectiveness of zinc (Zn) fortification in a parboiling process for improving Zn density in parboiled-polished rice and its potential bioavailability in the human diet. Fortification of Zn in whole paddy rice grain with 50–400 mg Zn/kg paddy rice, during parboiling, increased Zn concentrations in polished-parboiled rice from 1.3 to 4.5 times those in unfortified parboiled rice. The added Zn rapidly penetrated into parboiled rice grains in the initial soaking process before saturation. There was an exponential correlation between Zn concentrations in unpolished (r = 0.63) (p < 0.01) and polished rice (r = 0.30) (p < 0.05) and soaking time. Zinc concentrations in unpolished rice were linearly correlated with Zn concentration in the polished rice (r = 0.60) (p < 0.01). Moreover, more than half of the added Zn is retained after a simulated washing process before cooking, ranging from 64–100%. In the Zn-fortified parboiled rice, 57–100% of Zn in polished rice grain was soluble in dilute acid, which was indicative of a high potential Zn bioavailability for human intake. The results suggest that parboiled rice has great potential for Zn fortification.  相似文献   
4.
Stentor coeruleus is a ciliate known for its regenerative ability. Recent genome sequencing reveals that its spliceosomal introns are exceptionally small. We wondered whether the multimegadalton spliceosome has any unique characteristics for removal of the tiny introns. First, we analyzed intron features and identified spliceosomal RNA/protein components. We found that all snRNAs are present, whereas many proteins are conserved but slightly reduced in size. Some regulators, such as Serine/Arginine-rich proteins, are noticeably undetected. Interestingly, while most parts of spliceosomal proteins, including Prp8′s positively charged catalytic cavity, are conserved, regions of branching factors projecting to the active site are not. We conjecture that steric-clash avoidance between spliceosomal proteins and a sharply looped lariat might occur, and splicing regulation may differ from other species.  相似文献   
5.
The present study pioneered an investigation of a novel and cost-effective approach to fortify Fe in rice and to greatly improve Fe nutrition in rice-based diets through parboiling, though it remains at its preliminary phase. Rice grains of seven cultivars were parboiled in deionised water containing different levels of Fe chelate made by mixing different proportions of Fe sulfate (FeSO4) with ethylenediaminetetra-acetic acid disodium salt (Na2EDTA). Adding Fe to the parboiling water resulted in an increased Fe concentration in the most grain, effectively where FeSO4 and Na2EDTA were mixed at 2:1 molar ratio (11.16 g Fe per 100 g raw paddy grain). This treatment resulted in Fe concentrations in white rice milled for 60 s and 120 s, which were 20–50 times higher than those in the unfortified milled raw rice grains. The Fe concentrations in milled rice grains were 50–150 mg Fe kg−1 in 60 s milled grains with a slight reduction in 120 s milled grains. Perls Prussian blue staining of the cross section of Fe-fortified parboiled rice grains suggested inward movement of added Fe into the endosperm through the apoplastic pathway in the dorsal region of the rice grain. The retention rates of fortified Fe varied among the different cultivars, possibly due to different physical–chemical properties of the grains. The percentages of soluble fraction of the total Fe were higher than 50% in all cultivars tested, indicating its high bioavailability potential, though it remains to be evaluated. The present findings provided a preliminary basis for further investigation of this innovative technique, before its adoption by parboiled rice industry, such as optimising the levels of Fe addition and industrial process and Fe bioavailability in Fe-fortified-parboiled rice.  相似文献   
6.
The present study evaluated the key factors affecting the efficiency of iron (Fe) penetration into the endosperm in parboiled rice of different varieties. It also investigated effects of storage time on Fe bio-accessibility, rice colour and Fe retention after rinsing. Rice grains of three varieties were fortified with an increasing range of Fe-fortification rates during the parboiling process, under two typical parboiling conditions, which are ambient soaking temperature for 24 h and 60 °C soaking temperature for 6 h at neutral (6.0–6.5) and acidic pH (3.0–3.5). Soaking of paddy rice, at 60 °C in acidic water for 6 h before steaming, was found to be better for maximising the Fe concentration in white-parboiled rice than the former ambient soaking. Under this parboiling condition, adding 250 mg Fe kg−1 of paddy rice, at soaking, produced the most desirable Fe concentration in white rice, ranging from 17.5 to 25.4 mg kg−1 among the rice varieties tested. The concentrations of Fe in parboiled white rice exhibited an exponential increase with increasing concentrations of Fe in the soaking water in all varieties, which were linearly related to Fe concentration of brown rice (r = 0.96∗∗, p < 0.01). The colour of the parboiled rice fortified with Fe was initially light yellow, with variation among rice varieties, but it did become slightly darker after 16 weeks of storage, probably because of Fe oxidisation. This may be related to decreasing bio-accessibility after 20 weeks of storage. Storage, however, did not affect the total Fe retention after rinsing, though the retention rate was variety-dependent. Information about parboiling will provide the basis for formulating an optimal industry protocol for producing Fe-fortified-parboiled rice, which can be further refined in pilot studies on the industrial scale.  相似文献   
7.
8.
Chemical composition modification and surface modification of coir fibers are made in view of their use as reinforcement in coir-based green composites. Composites were prepared using coir fiber treated with varying pretreatment condition. The changes in the proportion of chemical composition and morphological properties of coir fibers with different coir pretreatment condition were discussed. It is observed that the mechanical properties of coir-based green composites; modulus of rupture and internal bond, increase as a result of chemical composition modification and surface modification. Scanning electron microscopy (SEM) investigations show that surface modifications improve the fiber/matrix adhesion.  相似文献   
9.
Although superheated steam (SHS) roasting has proved to be capable of improving selected quality of roasted Robusta coffee beans, impact of SHS roasting on aroma characteristics of the beans is not well understood. This study therefore aimed to investigate the effect of SHS roasting on aroma profiles and sensory characteristics of Robusta beans undergone SHS roasting at 190–250 °C; results were compared with those of beans roasted by hot air (HA). Sensory characteristics of selected samples were also compared with HA-roasted Arabica beans. Forty five aroma compounds were identified; most were fully developed in beans roasted at 230 °C and tended to degrade in beans roasted at 250 °C. SHS roasting led to more extensive formation of aroma compounds contributing to caramel note, while helped reduce formation of major contributors to spicy, roasty and burnt notes. SHS-roasted Robusta beans exhibited more resemblance to Arabica beans than their HA-roasted counterpart.  相似文献   
10.
BACKGROUND: Iron (Fe) fortification of parboiled rice increases both Fe concentration and bioavailability in milled grains (i.e. white rice). The aim of the present study was to evaluate parboiled rice fortified with 250 and 450 mg Fe kg?1 paddy rice for its pre‐cooking appearance, cooking quality, basic sensory attributes and overall acceptance in comparison with unfortified parboiled rice in Thailand and local parboiled rice in Bangladesh. RESULTS: Fe fortification at 250 mg Fe kg?1 paddy rice significantly elevated Fe concentration in white rice to as high as 19.1 mg Fe kg?1 white rice, compared with 6.2 mg Fe kg?1 white rice for unfortified parboiled rice, without any adverse impact on consumer acceptance based on the current preliminary assessment. The added Fe was well retained in the cooked rice, with significant residual value for human intake. Panellists in Thailand and Bangladesh did not detect significant differences in the acceptability of parboiled rice fortified at 250 mg Fe kg?1 paddy rice compared with unfortified and local parboiled rice respectively. However, Fe fortification of parboiled rice at the higher level of 450 mg Fe kg?1 paddy rice significantly intensified the yellow colour of the grain and changed the off‐flavour, chewiness and flakiness of the cooked Fe‐fortified parboiled rice. This resulted in a low acceptability ranking of parboiled rice fortified at 450 mg Fe kg?1 paddy rice by panellists in both Thailand and Bangladesh. CONCLUSION: Fe fortification of parboiled rice at an appropriate level (e.g. 250 mg Fe kg?1 paddy rice) is dosage‐effective and acceptable to rice consumers. Consumer acceptability of Fe‐fortified parboiled rice is closely related to pre‐cooking appearance, cooking quality and sensory attributes. Copyright © 2009 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号