首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
轻工业   2篇
自动化技术   1篇
  2018年   1篇
  2014年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
Raised levels of circulating inflammatory markers are associated with coronary artery disease, obesity and type II diabetes. It has been proposed that the ingestion of high‐fat meals may serve as a stimulus to raise systemic inflammatory tone, although interventional studies have yielded conflicting results. We here review 57 studies of high‐fat meal induced acute postprandial inflammation to identify the most frequently reported markers of postprandial inflammation and to compare these results with the highly consistent low‐grade endotoxaemia model in man. Most plasma borne markers of inflammation, such as cytokines and soluble adhesion molecules, were not consistently raised after a high‐fat meal. However, pro‐inflammatory leukocyte surface markers, mRNA and proteins were elevated in almost all studies in which they were measured. These markers followed kinetics similar to those observed following intravenous injection of low doses of endotoxin in man, were positively associated with likelihood of contamination of test meals with pro‐inflammatory bacterial molecules and were reduced in several studies examining parallel meals supplemented with foodstuffs containing anti‐inflammatory phytochemicals. Future studies of postprandial inflammation may yield more consistent evidence by focusing on leukocyte, rather than plasma‐borne, markers of inflammation and by considering the test meal content of pro‐ and anti‐inflammatory dietary constituents.  相似文献   
2.
3.
Recent evidence suggests that exposure to stimulants of the innate immune receptors Toll-like receptor (TLR)-2 and TLR4 may contribute to the development of atherosclerosis and insulin resistance. We showed recently that common foodsuffs can contain TLR-stimulants, and that the greatest concentrations were present in meat-based products. Using a recently developed quantitative bioassay, we here examined the kinetics of accumulation of TLR2- and TLR4-stimulants in a variety of meat products held at 5 °C in air or under a modified atmosphere for up to 8 d. Meat content of TLR-stimulants increased with time in each meat examined and was paralleled by growth of pseudomonads and Enterobacteriaceae, suggesting that bacterial lipopeptides and lipopolysaccharides are the likely sources of TLR2- and TLR4-stimulants, respectively. TLR-stimulants reached the highest levels (approximately 80 μg lipopeptide-equivalents per gramme and approximately 7 μg lipopolysaccharide-equivalents per gram) in meat that was minced rather than intact, and when stored in air rather than under a modified atmosphere. TLR2- and TLR4-stimulants in meat products cooked for 1 h retained approximately 20% and approximately 40% of their bioactivity, respectively. In summary, storage conditions and microbial flora critically regulate the kinetics of TLR2- and TLR4-stimulant accumulation in meat products and these may retain biological activity after cooking. PRACTICAL APPLICATION: The novel assays presented in this work could be used to predict the potential of foodstuffs to promote inflammatory signaling in human subjects, which may be deleterious to health. These assays may also be used to monitor the historical microbial flora in food products after cooking or other forms of food processing may have rendered the original microflora nonviable.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号