首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   5篇
电工技术   1篇
化学工业   26篇
金属工艺   2篇
建筑科学   4篇
能源动力   10篇
轻工业   30篇
石油天然气   3篇
无线电   38篇
一般工业技术   15篇
冶金工业   21篇
原子能技术   1篇
自动化技术   27篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   1篇
  2014年   4篇
  2013年   8篇
  2012年   8篇
  2011年   16篇
  2010年   9篇
  2009年   16篇
  2008年   16篇
  2007年   16篇
  2006年   8篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
1.
Abstract. Locally stationary processes are non‐stationary stochastic processes the second‐order structure of which varies smoothly over time. In this paper, we develop a method to bootstrap the local periodogram of a locally stationary process. Our method generates pseudo local periodogram ordinates by combining a parametric time and non‐parametric frequency domain bootstrap approach. We first fit locally a time varying autoregressive model so as to capture the essential characteristics of the underlying process. A locally calculated non‐parametric correction in the frequency domain is then used so as to improve upon the locally parametric autoregressive fit. As an application, we investigate theoretically the asymptotic properties of the bootstrap method proposed applied to the class of local spectral means, local ratio statistics and local spectral density estimators. Some simulations demonstrate the ability of our method to give accurate estimates of the quantities of interest in finite sample situations and an application to a real‐life data‐set is presented.  相似文献   
2.
This paper addresses the problem of the pursuit of a maneuvering target by a group of pursuers distributed in the plane. This pursuit problem is solved by associating it with a Voronoi-like partitioning problem that characterizes the set of initial positions from which the target can be intercepted by a given pursuer faster than any other pursuer from the same group. In the formulation of this partitioning problem, the target does not necessarily travel along prescribed trajectories, as it is typically assumed in the literature, but, instead, it can apply an “evading” strategy in an effort to delay or, if possible, escape capture. We characterize an approximate solution to this problem by associating it with a standard Voronoi partitioning problem. Subsequently, we propose a relay pursuit strategy, that is, a special group pursuit scheme such that, at each instant of time, only one pursuer is assigned the task of capturing the maneuvering target. During the course of the relay pursuit, the pursuer–target assignment changes dynamically with time based on the (time varying) proximity relations between the pursuers and the target. This proximity information is encoded in the solution of the Voronoi-like partitioning problem. Simulation results are presented to highlight the theoretical developments.  相似文献   
3.
Effects of Near-Fault Ground Shaking on Sliding Systems   总被引:3,自引:0,他引:3  
A numerical study is presented for a rigid block supported through a frictional contact surface on a horizontal or an inclined plane, and subjected to horizontal or slope-parallel excitation. The latter is described with idealized pulses and near-fault seismic records strongly influenced by forward-directivity or fling-step effects (from Northridge, Kobe, Kocaeli, Chi-Chi, Aegion). In addition to the well known dependence of the resulting block slippage on variables such as the peak base velocity, the peak base acceleration, and the critical acceleration ratio, our study has consistently and repeatedly revealed a profound sensitivity of both maximum and residual slippage: (1) on the sequence and even the details of the pulses contained in the excitation and (2) on the direction (+ or ?) in which the shaking of the inclined plane is imposed. By contrast, the slippage is not affected to any measurable degree by even the strongest vertical components of the accelerograms. Moreover, the slippage from a specific record may often be poorly correlated with its Arias intensity. These findings may contradict some of the prevailing beliefs that emanate from statistical correlation studies. The upper-bound sliding displacements from near-fault excitations may substantially exceed the values obtained from some of the currently available design charts.  相似文献   
4.
5.
6.
Stimulation of alpha-adrenoceptors on ventricular cardiomyocytes isolated from adult rat hearts leads to cellular alkalization, increases of creatine phosphate concentration, RNA mass, and protein synthesis. This study investigated whether the increase of creatine phosphate concentrations is causally linked to the hypertrophic response of cardiomyocytes under alpha-adrenoceptor stimulation. Cellular alkalization achieved with phenylephrine (10 microM), an alpha-adrenoceptor agonist, was abolished in the presence of the sodium-proton-exchange (NHE)-inhibitor HOE 694 (1 microM). HOE 694 inhibited also the alpha-adrenoceptor-mediated increase in cellular creatine phosphate and the increase in cellular RNA mass. The phenylephrine-induced stimulation of protein synthesis (determined by incorporation of 14C-phenylalanine) was reduced by one-third when HOE 694 was present. beta-Guanidinopropionic acid was added to cardiomyocytes to reduce cellular creatine phosphate concentrations. In these cultures, alpha-adrenoceptor stimulation activated NHE, but creatine phosphate concentrations were not increased. Protein synthesis was augmented to the same extent as in control cultures, but total RNA mass did not increase. From these results we conclude that alpha-adrenoceptor stimulation causes the increase in protein synthesis via activation of NHE, but independent of the concomitant increase in creatine phosphate contents. The effect of alpha-adrenoceptor stimulation on total RNA mass (translational capacity) is also caused by NHE activation, but depends on the changes in creatine phosphate contents as well.  相似文献   
7.
The problem of sequence detection in frequency-nonselective/time-selective fading channels, when channel state information (CSI) is not available at the transmitter and receiver, is considered in this paper. The traditional belief is that exact maximum-likelihood sequence detection (MLSD) of an uncoded sequence over this channel has exponential complexity in the channel coherence time. Thus, for slowly varying channels, i.e., channels having coherence time on the order of the sequence length, the complexity appears to be exponential in the sequence length. In the first part of this work, it is shown that exact MLSD can be computed with only polynomial worst case complexity in the sequence length regardless of the operating signal-to-noise ratio (SNR) for equal-energy signal constellations. By establishing a relationship between the aforementioned complexity and the rank of the correlation matrix of the fading process, an understanding of how complexity of the optimal MLSD receiver varies as the channel dynamics change is provided. In the second part of this paper, the problem of decoding turbo-like codes in frequency-nonselective/time-selective fading channels without receiver CSI is examined. Using arguments similar to the ones used for the MLSD case, it is shown that the exact symbol-by-symbol soft-decision metrics (SbSSDMs) implied by the min-sum algorithm can be evaluated with polynomial worst case complexity in the sequence length regardless of SNR for equal-energy signal constellations. Finally, by simplifying some key steps in the polynomial-complexity algorithm, a family of fast, approximate algorithms is derived, which yield near-optimal performance  相似文献   
8.
Call Admission Control in Satellite Networks under Rain Fading   总被引:1,自引:0,他引:1  
A new call admission control scheme for satellite networks operating at frequencies above 10 GHz is proposed. The major factor impairing the link performance at these frequencies is rain attenuation, a physical phenomenon exhibiting both spatial and temporal variation. Exploiting the predictability of the satellite channel, a new call is accepted provided that there are sufficient resources for existing and new users to guarantee QoS. The performance of the proposed scheme is investigated using Markov chain analysis. Finally, the upper bound of the call blocking probability is determined.  相似文献   
9.
Two sets of traditional Greek sheep milk yoghurt were produced: the first one (YC) using normal yoghurt culture (Lactobacillus delbrueckii subsp. bulgaricus ?10.13 and Streptococcus thermophilus ?10.7) and the second (PR) with the same normal culture mixed with Lactobacillus paracasei subsp. paracasei DC412. YC and PR had similar physicochemical properties and proteolysis patterns throughout storage. Both products showed similar peptide profiles by RP-HPLC but quantitative differences were observed in respect to storage time. Single-strain cultures of the microorganisms used showed similar peptide profiles for both lactobacilli, yet L. delbrueckii subsp. bulgaricus was the most proteolytic of all three microorganisms. The peptide content and the ACE-inhibitory activity of the water-soluble extracts of yoghurts, YC and PR, increased throughout storage. Major peptides were identified from yoghurt PR and from the separate cultures of L. delbrueckii subsp. bulgaricus and L. paracasei subsp. paracasei. Most of these peptides were derived from β-casein. A peptide, β-CN f114-121, with well-established ACE-inhibitory and opiate-like activity was identified in yoghurt PR. Further identified peptides were regarded as potential ACE-inhibitors according to their sequence.  相似文献   
10.
A complete and accurate model for the symmetric gas–solid turbulent round jet is accomplished using the Reynolds Averaged Navier–Stokes (RANS) equations. The two-fluid model was used to describe the averaged characteristics of the two phases, including the particle mass concentration, the turbulent kinetic energy and its dissipation in the mixture. Particle–turbulence interaction (turbulence modulation) is described by a two-way coupling model. The drag, lift and gravitation forces are incorporated into the system of equations using appropriate closure equations. A finite difference numerical scheme was used for the solution of the set of the governing equations and the results of the model were validated by comparison with data from several experiments. The influence of two types of particles, namely glass and electrocorundum, of different sizes and different loadings on the velocity and turbulence structure of the jet is examined. The computational results show the influence of the particulate phase on the velocity and turbulence structure of the jet.The significance of this study is that for the first time it presents explicitly the full RANS equations for a fluid jet with particles in an unabridged way and specifies the entire set of closure relations that are used for fluid–particle interactions including the equations for the extended kε model, the two-way particle–turbulence interactions and turbulence modulation as well as the inclusion of a lateral Saffman force.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号